Add state tracking for volumetric rendering.

This commit is contained in:
hal8174 2024-06-03 12:57:59 +02:00
parent c1e15155ad
commit f702e82b4f
2 changed files with 197 additions and 55 deletions

View file

@ -1,9 +1,11 @@
#include "Application2.h"
#include "embree4/rtcore_common.h"
#include "helper.hpp"
#include "random_sampler.hpp"
#include "ray.hpp"
#include <cmath>
#define EPS 0.01f
#define EPS 0.0001f
void Application2::initScene() {
Data_Constructor(&data, 1, 8);
@ -114,6 +116,19 @@ Vec3fa ACESFilm(Vec3fa x, float exposure) {
return (x * (a * x + b)) / (x * (c * x + d) + e);
}
Sample createSample(Ray &ray) {
Sample sample;
Vec3fa Ns = normalize(ray.Ng);
sample.P = ray.org + ray.tfar * ray.dir;
sample.Ng = ray.Ng;
sample.Ns = Ns;
sample.Ng = face_forward(ray.dir, normalize(sample.Ng));
sample.Ns = face_forward(ray.dir, normalize(sample.Ns));
return sample;
}
// Function that selects implementation at runtime
Vec3fa Application2::renderPixel(float x, float y, const ISPCCamera& camera, RayStats& stats, RandomSampler& sampler) {
if (selected == 0) {
@ -130,6 +145,8 @@ Vec3fa Application2::renderPixelHomogeneous(float x, float y, const ISPCCamera&
Vec3fa L = Vec3fa(0.0f);
Vec3fa Lw = Vec3fa(1.0f);
bool in_volume = scene == 0;
/* initialize ray */
Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x * camera.xfm.l.vx + y * camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f,
inf);
@ -146,6 +163,9 @@ Vec3fa Application2::renderPixelHomogeneous(float x, float y, const ISPCCamera&
const Vec3fa wo = neg(ray.dir);
float mu_t = mu_a + mu_s;
if (!in_volume) {
mu_t = 0;
}
float t;
if (mu_t == 0) {
t = inf;
@ -179,18 +199,70 @@ Vec3fa Application2::renderPixelHomogeneous(float x, float y, const ISPCCamera&
Ray shadow(sample.P, ls.dir, EPS, ls.dist - EPS, 0.0f);
/* trace shadow ray */
RTCOccludedArguments sargs;
rtcInitOccludedArguments(&sargs);
sargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
rtcOccluded1(data.g_scene, RTCRay_(shadow), &sargs);
RayStats_addShadowRay(stats);
/* shadow magic */
float Lwscatter = 1;
float shadow_near = EPS;
bool shadow_in_volume = in_volume;
while (1) {
/* initialize shadow ray */
Ray shadow(sample.P, ls.dir, shadow_near, ls.dist - EPS, 0.0f);
Sample shadowSample = createSample(shadow);
/* shadow ray */
RTCIntersectArguments iargs;
rtcInitIntersectArguments(&iargs);
iargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
rtcIntersect1(data.g_scene, RTCRayHit_(shadow), &iargs);
RayStats_addRay(stats);
if (shadow.geomID == RTC_INVALID_GEOMETRY_ID) {
if (shadow_in_volume) {
Lwscatter *= std::pow(M_E, - mu_t * (shadow.tfar - shadow.tnear()));
}
break;
}
/* calculate BRDF */
BRDF brdf;
std::vector<Material *> material_array = data.scene->materials;
Material__preprocess(material_array, shadow.geomID, brdf, neg(shadow.dir), shadowSample);
if (brdf.name == "default") {
if (shadow_in_volume) {
Lwscatter *= std::pow(M_E, - mu_t * (shadow.tfar - shadow.tnear()));
}
shadow_in_volume = dot(normalize(shadow.Ng), shadow.dir) < 0;
shadow_near = shadow.tfar + EPS;
} else {
Lwscatter = 0.0;
break;
}
};
// /* trace shadow ray */
// RTCOccludedArguments sargs;
// rtcInitOccludedArguments(&sargs);
// sargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
// rtcOccluded1(data.g_scene, RTCRay_(shadow), &sargs);
// RayStats_addShadowRay(stats);
float scatter = phase(scattering_parameter, -dot(-ray.dir,shadow.dir));
/* add light contribution if not occluded (NEE) */
if (shadow.tfar >= 0.0f) {
if (Lwscatter > 0.0) {
// L += Lw * light_diffuse * ls.weight;
L += Lw * std::pow(M_E, - mu_t * shadow.tfar) * scatter * (mu_s / mu_t) * ls.weight * dot(sample.Ng, ls.dir) / data.scene->lights.size();
L += Lw * Lwscatter * scatter * (mu_s / mu_t) * ls.weight * dot(sample.Ng, ls.dir) / data.scene->lights.size();
// L += Lw * light_diffuse * ls.weight/ data.scene->lights.size();
}
@ -204,16 +276,11 @@ Vec3fa Application2::renderPixelHomogeneous(float x, float y, const ISPCCamera&
ray = Ray(ray.org + t * ray.dir,o,EPS,inf);
} else if (ray.geomID != RTC_INVALID_GEOMETRY_ID) {
Vec3fa Ns = normalize(ray.Ng);
Sample sample;
sample.P = ray.org + ray.tfar * ray.dir;
sample.Ng = ray.Ng;
sample.Ns = Ns;
Sample sample = createSample(ray);
int matId = data.scene->geometries.at(ray.geomID)->materialID;
unsigned lightID = data.scene->geometries.at(ray.geomID)->lightID;
sample.Ng = face_forward(ray.dir, normalize(sample.Ng));
sample.Ns = face_forward(ray.dir, normalize(sample.Ns));
// include direct light on first ray
if (lightID != unsigned(-1)) {
@ -225,52 +292,113 @@ Vec3fa Application2::renderPixelHomogeneous(float x, float y, const ISPCCamera&
}
break;
}
/* calculate BRDF */
BRDF brdf;
std::vector<Material *> material_array = data.scene->materials;
Material__preprocess(material_array, matId, brdf, wo, sample);
if (brdf.name == "default") {
/* Light ray */
int id = (int)(RandomSampler_get1D(sampler) * data.scene->lights.size());
if (id == data.scene->lights.size())
id = data.scene->lights.size() - 1;
// printf("id: %d\n", id);
const Light* l = data.scene->lights.at(id);
in_volume = dot(normalize(ray.Ng), ray.dir) < 0;
Light_SampleRes ls = Lights_sample(l, sample, RandomSampler_get2D(sampler));
ray = Ray(ray.org + ray.tfar * ray.dir, ray.dir, EPS, inf);
Vec3fa light_diffuse = Material__eval(material_array, matId, brdf, wo, sample, ls.dir);
i--;
/* initialize shadow ray */
Ray shadow(sample.P, ls.dir, EPS, ls.dist - EPS, 0.0f);
} else {
/* trace shadow ray */
RTCOccludedArguments sargs;
rtcInitOccludedArguments(&sargs);
sargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
rtcOccluded1(data.g_scene, RTCRay_(shadow), &sargs);
RayStats_addShadowRay(stats);
/* Light ray */
int id = (int)(RandomSampler_get1D(sampler) * data.scene->lights.size());
if (id == data.scene->lights.size())
id = data.scene->lights.size() - 1;
// printf("id: %d\n", id);
const Light* l = data.scene->lights.at(id);
/* add light contribution if not occluded (NEE) */
if (shadow.tfar >= 0.0f) {
// L += Lw * light_diffuse * ls.weight;
L += Lw * std::pow(M_E, - mu_t * shadow.tfar) *light_diffuse * ls.weight * dot(sample.Ng, ls.dir) / data.scene->lights.size();
// L += Lw * light_diffuse * ls.weight/ data.scene->lights.size();
}
Light_SampleRes ls = Lights_sample(l, sample, RandomSampler_get2D(sampler));
Vec3fa light_diffuse = Material__eval(material_array, matId, brdf, wo, sample, ls.dir);
/* shadow magic */
float Lwscatter = 1;
float shadow_near = EPS;
bool shadow_in_volume = in_volume;
while (1) {
/* initialize shadow ray */
Ray shadow(sample.P, ls.dir, shadow_near, ls.dist - EPS, 0.0f);
Sample shadowSample = createSample(shadow);
/* shadow ray */
RTCIntersectArguments iargs;
rtcInitIntersectArguments(&iargs);
iargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
rtcIntersect1(data.g_scene, RTCRayHit_(shadow), &iargs);
RayStats_addRay(stats);
if (shadow.geomID == RTC_INVALID_GEOMETRY_ID) {
if (shadow_in_volume) {
Lwscatter *= std::pow(M_E, - mu_t * (shadow.tfar - shadow.tnear()));
}
break;
}
/* calculate BRDF */
BRDF brdf;
std::vector<Material *> material_array = data.scene->materials;
Material__preprocess(material_array, shadow.geomID, brdf, neg(shadow.dir), shadowSample);
if (brdf.name == "default") {
if (shadow_in_volume) {
Lwscatter *= std::pow(M_E, - mu_t * (shadow.tfar - shadow.tnear()));
}
shadow_in_volume = dot(normalize(shadow.Ng), shadow.dir) < 0;
shadow_near = shadow.tfar + EPS;
} else {
Lwscatter = 0.0;
break;
}
};
// /* trace shadow ray */
// RTCOccludedArguments sargs;
// rtcInitOccludedArguments(&sargs);
// sargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
// rtcOccluded1(data.g_scene, RTCRay_(shadow), &sargs);
// RayStats_addShadowRay(stats);
/* add light contribution if not occluded (NEE) */
if (Lwscatter > 0.0) {
// L += Lw * light_diffuse * ls.weight;
L += Lw * Lwscatter *light_diffuse * ls.weight * dot(sample.Ng, ls.dir) / data.scene->lights.size();
// L += Lw * light_diffuse * ls.weight/ data.scene->lights.size();
}
// Use cosine sampling
Vec2f uv = RandomSampler_get2D(sampler);
Sample3f wi = cosineSampleHemisphere(uv.x, uv.y, sample.Ng);
// Use cosine sampling
Vec2f uv = RandomSampler_get2D(sampler);
Sample3f wi = cosineSampleHemisphere(uv.x, uv.y, sample.Ng);
Vec3fa diffuse = Material__eval(material_array, matId, brdf, wo, sample, wi.v);
// printf("pdf: %f\n", wi.pdf);
Vec3fa diffuse = Material__eval(material_array, matId, brdf, wo, sample, wi.v);
// printf("pdf: %f\n", wi.pdf);
Lw *= diffuse / wi.pdf;
Lw *= diffuse / wi.pdf;
ray = Ray(sample.P,wi.v,EPS,inf);
ray = Ray(sample.P,wi.v,EPS,inf);
}
}
}

View file

@ -1,6 +1,7 @@
#pragma once
#include "helper.hpp"
#include "imgui.h"
#include "math/vec3fa.h"
class Application2 : public Application {
@ -15,22 +16,28 @@ private:
void drawGUI() override {
ImGui::Checkbox("Bounding Box", &boundingBox);
ImGui::InputInt("Ray depth", &ray_depth);
if (ImGui::InputInt("Ray depth", &ray_depth))
clear();
if (ray_depth < 1) {
ray_depth = 1;
}
const char* items[] = {"Original", "Homogeneous"};
ImGui::Combo("Version", &selected, items, 2);
if (ImGui::Combo("Version", &selected, items, 2))
clear();
ImGui::SliderFloat("mu_a", &mu_a, 0.0, 1.0);
ImGui::SliderFloat("mu_s", &mu_s, 0.0, 1.0);
ImGui::SliderFloat("scattering parameter", &scattering_parameter, -1.0, 1.0);
if (ImGui::SliderFloat("mu_a", &mu_a, 0.0, 1.0))
clear();
if (ImGui::SliderFloat("mu_s", &mu_s, 0.0, 1.0))
clear();
if (ImGui::SliderFloat("scattering parameter", &scattering_parameter, -1.0, 1.0))
clear();
const char* scenes[] = {"Gnome", "Horse", "Heterogenous"};
int oldscene = scene;
ImGui::Combo("Scenes", &scene, scenes, 3);
if (scene != oldscene) {
if (ImGui::Combo("Scenes", &scene, scenes, 3)) {
Data_Destructor(&data);
Data_Constructor(&data, 1, 8);
if (scene == 0)
@ -42,6 +49,13 @@ private:
}
}
void clear() {
data.accu_count = 0;;
for (size_t i = 0; i < data.accu_width * data.accu_height; i++) {
data.accu[i] = Vec3fx(0.0);
}
}
void initScene() override;
void emptyScene();