565 lines
21 KiB
C++
565 lines
21 KiB
C++
#include "Application2.h"
|
|
#include "embree4/rtcore_common.h"
|
|
#include "helper.hpp"
|
|
#include "random_sampler.hpp"
|
|
#include "ray.hpp"
|
|
#include <cmath>
|
|
|
|
#define EPS 0.0001f
|
|
|
|
void Application2::initScene() {
|
|
Data_Constructor(&data, 1, 8);
|
|
|
|
/* select scene here */
|
|
gnomeScene();
|
|
// horseScene();
|
|
// heterogenousScene();
|
|
}
|
|
|
|
void Application2::gnomeScene() {
|
|
FileName file = workingDir + FileName("Framework/scenes/gnome/garden_gnome.obj");
|
|
|
|
/* set default camera */
|
|
camera.from = Vec3fa(-0.07894, -0.414116, -1.40016);
|
|
camera.to = camera.from + Vec3fa(0.0, 0.0, 1.0);
|
|
speed = 0.005;
|
|
|
|
Ref<SceneGraph::GroupNode> sceneGraph = loadOBJ(file, false).cast<SceneGraph::GroupNode>();
|
|
auto light = new SceneGraph::LightNodeImpl<SceneGraph::PointLight>(
|
|
SceneGraph::PointLight(Vec3fa(-0.1, -0.065, 0.21), Vec3fa(10, 10, 10)));
|
|
sceneGraph->add(light);
|
|
|
|
Ref<SceneGraph::GroupNode> flattened_scene = SceneGraph::flatten(sceneGraph, SceneGraph::INSTANCING_NONE);
|
|
Scene* scene = new Scene;
|
|
scene->add(flattened_scene);
|
|
sceneGraph = nullptr;
|
|
flattened_scene = nullptr;
|
|
|
|
auto renderScene = new RenderScene(g_device, scene);
|
|
g_render_scene = renderScene;
|
|
data.scene = renderScene;
|
|
data.densityGrid = nullptr;
|
|
data.tempGrid = nullptr;
|
|
scene = nullptr;
|
|
}
|
|
|
|
void Application2::horseScene() {
|
|
FileName file = workingDir + FileName("Framework/scenes/horse/horse.obj");
|
|
|
|
/* set default camera */
|
|
camera.from = Vec3fa(0, 0.0, -0.5);
|
|
camera.to = Vec3fa(0.0, 0.0, 0.0);
|
|
// speed = 0.005;
|
|
|
|
Ref<SceneGraph::GroupNode> sceneGraph = loadOBJ(file, false).cast<SceneGraph::GroupNode>();
|
|
auto light = new SceneGraph::QuadLightMesh(Vec3fa(-0.25, 0.5, 0), Vec3fa(0.25, 0.5, 0.5),
|
|
Vec3fa(0.25, 0.5, 0),
|
|
Vec3fa(-0.25, 0.5, 0.5), Vec3fa(5, 5, 5));
|
|
sceneGraph->add(light);
|
|
|
|
Ref<SceneGraph::GroupNode> flattened_scene = SceneGraph::flatten(sceneGraph, SceneGraph::INSTANCING_NONE);
|
|
Scene* scene = new Scene;
|
|
scene->add(flattened_scene);
|
|
sceneGraph = nullptr;
|
|
flattened_scene = nullptr;
|
|
|
|
auto renderScene = new RenderScene(g_device, scene);
|
|
g_render_scene = renderScene;
|
|
data.scene = renderScene;
|
|
data.densityGrid = nullptr;
|
|
data.tempGrid = nullptr;
|
|
scene = nullptr;
|
|
}
|
|
|
|
void Application2::heterogenousScene() {
|
|
FileName file = workingDir + FileName("Framework/scenes/box.obj");
|
|
|
|
/* set default camera */
|
|
camera.from = Vec3fa(0, 0.0, -2);
|
|
camera.to = Vec3fa(0.0, 0.0, 0.0);
|
|
|
|
Ref<SceneGraph::GroupNode> sceneGraph = loadOBJ(file, false).cast<SceneGraph::GroupNode>();
|
|
auto light = new SceneGraph::QuadLightMesh(Vec3fa(-1, 2, -1), Vec3fa(1, 2, 1),
|
|
Vec3fa(1, 2, -1),
|
|
Vec3fa(-1, 2, 1), Vec3fa(1, 1, 1));
|
|
sceneGraph->add(light);
|
|
|
|
Ref<SceneGraph::GroupNode> flattened_scene = SceneGraph::flatten(sceneGraph, SceneGraph::INSTANCING_NONE);
|
|
Scene* scene = new Scene;
|
|
scene->add(flattened_scene);
|
|
sceneGraph = nullptr;
|
|
flattened_scene = nullptr;
|
|
|
|
auto renderScene = new RenderScene(g_device, scene);
|
|
|
|
Vec3fa worldPos(-0.5, -0.5, -0.5); // Corner of the Cornell Box
|
|
Vec3fa scale(1, 1, 1); // Calculated scale
|
|
FileName filegrid = workingDir + FileName("Framework/scenes/fire/density.vol");
|
|
data.densityGrid = new Grid(filegrid.c_str(), Vec3ia(76, 184, 80), worldPos, scale);
|
|
FileName filegrid2 = workingDir + FileName("Framework/scenes/fire/temperature.vol");
|
|
data.tempGrid = new Grid(filegrid2.c_str(), Vec3ia(76, 184, 80), worldPos, scale);
|
|
|
|
g_render_scene = renderScene;
|
|
data.scene = renderScene;
|
|
scene = nullptr;
|
|
}
|
|
|
|
Vec3fa ACESFilm(Vec3fa x, float exposure) {
|
|
const Vec3fa a = Vec3fa(2.51f);
|
|
const Vec3fa b = Vec3fa(0.03f);
|
|
const Vec3fa c = Vec3fa(2.43f);
|
|
const Vec3fa d = Vec3fa(0.59f);
|
|
const Vec3fa e = Vec3fa(0.14f);
|
|
|
|
x *= exposure;
|
|
|
|
return (x * (a * x + b)) / (x * (c * x + d) + e);
|
|
}
|
|
|
|
Sample createSample(Ray &ray) {
|
|
Sample sample;
|
|
Vec3fa Ns = normalize(ray.Ng);
|
|
sample.P = ray.org + ray.tfar * ray.dir;
|
|
sample.Ng = ray.Ng;
|
|
sample.Ns = Ns;
|
|
|
|
sample.Ng = face_forward(ray.dir, normalize(sample.Ng));
|
|
sample.Ns = face_forward(ray.dir, normalize(sample.Ns));
|
|
|
|
return sample;
|
|
}
|
|
|
|
// Function that selects implementation at runtime
|
|
Vec3fa Application2::renderPixel(float x, float y, const ISPCCamera& camera, RayStats& stats, RandomSampler& sampler) {
|
|
if (selected == 0) {
|
|
return renderPixelOrig(x, y, camera, stats, sampler);
|
|
} else if (selected == 1) {
|
|
return renderPixelHomogeneous(x, y, camera, stats, sampler);
|
|
} else {
|
|
return Vec3fa(0.0f);
|
|
}
|
|
}
|
|
|
|
Vec3fa Application2::renderPixelHomogeneous(float x, float y, const ISPCCamera& camera, RayStats& stats, RandomSampler& sampler) {
|
|
/* radiance accumulator and weight */
|
|
Vec3fa L = Vec3fa(0.0f);
|
|
Vec3fa Lw = Vec3fa(1.0f);
|
|
|
|
bool in_volume = scene == 0;
|
|
|
|
/* initialize ray */
|
|
Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x * camera.xfm.l.vx + y * camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f,
|
|
inf);
|
|
|
|
|
|
for (int i = 0; i < ray_depth; i++) {
|
|
/* intersect ray with scene */
|
|
RTCIntersectArguments iargs;
|
|
rtcInitIntersectArguments(&iargs);
|
|
iargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
|
|
rtcIntersect1(data.g_scene, RTCRayHit_(ray), &iargs);
|
|
RayStats_addRay(stats);
|
|
|
|
const Vec3fa wo = neg(ray.dir);
|
|
|
|
float mu_t = mu_a + mu_s;
|
|
if (!in_volume) {
|
|
mu_t = 0;
|
|
}
|
|
float t;
|
|
if (mu_t == 0) {
|
|
t = inf;
|
|
} else {
|
|
// printf("%f\n", mu_t);
|
|
t = - std::log(1.0 - RandomSampler_get1D(sampler)) / mu_t;
|
|
}
|
|
|
|
// if (t != t | t <= 0) {
|
|
// printf("t: %f;%f\n", t, ray.tfar);
|
|
// }
|
|
|
|
|
|
if (t > 0.0 && t < ray.tfar) {
|
|
|
|
// Nee
|
|
/* Light ray */
|
|
// return {0.0, 0.0, 1.0};
|
|
int id = (int)(RandomSampler_get1D(sampler) * data.scene->lights.size());
|
|
if (id == data.scene->lights.size())
|
|
id = data.scene->lights.size() - 1;
|
|
const Light* l = data.scene->lights.at(id);
|
|
Sample sample;
|
|
sample.P = ray.org + t * ray.dir;
|
|
sample.Ng = ray.dir;
|
|
sample.Ns = ray.dir;
|
|
|
|
Light_SampleRes ls = Lights_sample(l, sample, RandomSampler_get2D(sampler));
|
|
|
|
/* initialize shadow ray */
|
|
Ray shadow(sample.P, ls.dir, EPS, ls.dist - EPS, 0.0f);
|
|
|
|
|
|
/* shadow magic */
|
|
|
|
float Lwscatter = 1;
|
|
float shadow_near = EPS;
|
|
|
|
bool shadow_in_volume = in_volume;
|
|
|
|
while (1) {
|
|
|
|
/* initialize shadow ray */
|
|
Ray shadow(sample.P, ls.dir, shadow_near, ls.dist - EPS, 0.0f);
|
|
|
|
Sample shadowSample = createSample(shadow);
|
|
|
|
/* shadow ray */
|
|
RTCIntersectArguments iargs;
|
|
rtcInitIntersectArguments(&iargs);
|
|
iargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
|
|
rtcIntersect1(data.g_scene, RTCRayHit_(shadow), &iargs);
|
|
RayStats_addRay(stats);
|
|
|
|
if (shadow.geomID == RTC_INVALID_GEOMETRY_ID) {
|
|
if (shadow_in_volume) {
|
|
Lwscatter *= std::pow(M_E, - mu_t * (shadow.tfar - shadow.tnear()));
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* calculate BRDF */
|
|
BRDF brdf;
|
|
std::vector<Material *> material_array = data.scene->materials;
|
|
|
|
Material__preprocess(material_array, shadow.geomID, brdf, neg(shadow.dir), shadowSample);
|
|
|
|
|
|
if (brdf.name == "default") {
|
|
|
|
if (shadow_in_volume) {
|
|
Lwscatter *= std::pow(M_E, - mu_t * (shadow.tfar - shadow.tnear()));
|
|
}
|
|
|
|
shadow_in_volume = dot(normalize(shadow.Ng), shadow.dir) < 0;
|
|
|
|
shadow_near = shadow.tfar + EPS;
|
|
|
|
} else {
|
|
Lwscatter = 0.0;
|
|
break;
|
|
}
|
|
|
|
|
|
};
|
|
// /* trace shadow ray */
|
|
// RTCOccludedArguments sargs;
|
|
// rtcInitOccludedArguments(&sargs);
|
|
// sargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
|
|
// rtcOccluded1(data.g_scene, RTCRay_(shadow), &sargs);
|
|
// RayStats_addShadowRay(stats);
|
|
|
|
float scatter = phase(scattering_parameter, -dot(-ray.dir,shadow.dir));
|
|
/* add light contribution if not occluded (NEE) */
|
|
if (Lwscatter > 0.0) {
|
|
// L += Lw * light_diffuse * ls.weight;
|
|
L += Lw * Lwscatter * scatter * (mu_s / mu_t) * ls.weight * dot(sample.Ng, ls.dir) / data.scene->lights.size();
|
|
// L += Lw * light_diffuse * ls.weight/ data.scene->lights.size();
|
|
}
|
|
|
|
// new direction
|
|
|
|
float pdf;
|
|
Vec3fa o = sample_phase_function(-ray.dir, scattering_parameter, RandomSampler_get2D(sampler), pdf);
|
|
|
|
Lw *= mu_s / mu_t;
|
|
|
|
ray = Ray(ray.org + t * ray.dir,o,EPS,inf);
|
|
|
|
} else if (ray.geomID != RTC_INVALID_GEOMETRY_ID) {
|
|
|
|
|
|
Sample sample = createSample(ray);
|
|
int matId = data.scene->geometries.at(ray.geomID)->materialID;
|
|
unsigned lightID = data.scene->geometries.at(ray.geomID)->lightID;
|
|
|
|
// include direct light on first ray
|
|
if (lightID != unsigned(-1)) {
|
|
if (i == 0) {
|
|
// printf("lightID: %d\n", lightID);
|
|
const Light* l = data.scene->lights[lightID];
|
|
Light_EvalRes evalRes = Lights_eval(l, sample, -wo);
|
|
L += Lw * evalRes.value;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* calculate BRDF */
|
|
BRDF brdf;
|
|
std::vector<Material *> material_array = data.scene->materials;
|
|
Material__preprocess(material_array, matId, brdf, wo, sample);
|
|
|
|
if (brdf.name == "default") {
|
|
|
|
in_volume = dot(normalize(ray.Ng), ray.dir) < 0;
|
|
|
|
ray = Ray(ray.org + ray.tfar * ray.dir, ray.dir, EPS, inf);
|
|
|
|
i--;
|
|
|
|
} else {
|
|
|
|
/* Light ray */
|
|
int id = (int)(RandomSampler_get1D(sampler) * data.scene->lights.size());
|
|
if (id == data.scene->lights.size())
|
|
id = data.scene->lights.size() - 1;
|
|
// printf("id: %d\n", id);
|
|
const Light* l = data.scene->lights.at(id);
|
|
|
|
Light_SampleRes ls = Lights_sample(l, sample, RandomSampler_get2D(sampler));
|
|
|
|
Vec3fa light_diffuse = Material__eval(material_array, matId, brdf, wo, sample, ls.dir);
|
|
|
|
|
|
/* shadow magic */
|
|
|
|
float Lwscatter = 1;
|
|
float shadow_near = EPS;
|
|
|
|
bool shadow_in_volume = in_volume;
|
|
|
|
while (1) {
|
|
|
|
/* initialize shadow ray */
|
|
Ray shadow(sample.P, ls.dir, shadow_near, ls.dist - EPS, 0.0f);
|
|
|
|
Sample shadowSample = createSample(shadow);
|
|
|
|
/* shadow ray */
|
|
RTCIntersectArguments iargs;
|
|
rtcInitIntersectArguments(&iargs);
|
|
iargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
|
|
rtcIntersect1(data.g_scene, RTCRayHit_(shadow), &iargs);
|
|
RayStats_addRay(stats);
|
|
|
|
if (shadow.geomID == RTC_INVALID_GEOMETRY_ID) {
|
|
if (shadow_in_volume) {
|
|
Lwscatter *= std::pow(M_E, - mu_t * (shadow.tfar - shadow.tnear()));
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* calculate BRDF */
|
|
BRDF brdf;
|
|
std::vector<Material *> material_array = data.scene->materials;
|
|
|
|
Material__preprocess(material_array, shadow.geomID, brdf, neg(shadow.dir), shadowSample);
|
|
|
|
|
|
if (brdf.name == "default") {
|
|
|
|
if (shadow_in_volume) {
|
|
Lwscatter *= std::pow(M_E, - mu_t * (shadow.tfar - shadow.tnear()));
|
|
}
|
|
|
|
shadow_in_volume = dot(normalize(shadow.Ng), shadow.dir) < 0;
|
|
|
|
shadow_near = shadow.tfar + EPS;
|
|
|
|
} else {
|
|
Lwscatter = 0.0;
|
|
break;
|
|
}
|
|
|
|
|
|
};
|
|
// /* trace shadow ray */
|
|
// RTCOccludedArguments sargs;
|
|
// rtcInitOccludedArguments(&sargs);
|
|
// sargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
|
|
// rtcOccluded1(data.g_scene, RTCRay_(shadow), &sargs);
|
|
// RayStats_addShadowRay(stats);
|
|
|
|
/* add light contribution if not occluded (NEE) */
|
|
if (Lwscatter > 0.0) {
|
|
// L += Lw * light_diffuse * ls.weight;
|
|
L += Lw * Lwscatter *light_diffuse * ls.weight * dot(sample.Ng, ls.dir) / data.scene->lights.size();
|
|
// L += Lw * light_diffuse * ls.weight/ data.scene->lights.size();
|
|
}
|
|
|
|
|
|
// Use cosine sampling
|
|
Vec2f uv = RandomSampler_get2D(sampler);
|
|
Sample3f wi = cosineSampleHemisphere(uv.x, uv.y, sample.Ng);
|
|
|
|
Vec3fa diffuse = Material__eval(material_array, matId, brdf, wo, sample, wi.v);
|
|
// printf("pdf: %f\n", wi.pdf);
|
|
|
|
Lw *= diffuse / wi.pdf;
|
|
|
|
ray = Ray(sample.P,wi.v,EPS,inf);
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
return L;
|
|
}
|
|
|
|
/* task that renders a single screen tile */
|
|
Vec3fa Application2::renderPixelOrig(float x, float y, const ISPCCamera& camera, RayStats& stats, RandomSampler& sampler) {
|
|
/* radiance accumulator and weight */
|
|
Vec3fa L = Vec3fa(0.0f);
|
|
Vec3fa Lw = Vec3fa(1.0f);
|
|
|
|
float transmittance = 1.0f;
|
|
|
|
/* initialize ray */
|
|
Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x * camera.xfm.l.vx + y * camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f,
|
|
inf);
|
|
|
|
/* intersect ray with scene */
|
|
RTCIntersectArguments iargs;
|
|
rtcInitIntersectArguments(&iargs);
|
|
iargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
|
|
rtcIntersect1(data.g_scene, RTCRayHit_(ray), &iargs);
|
|
RayStats_addRay(stats);
|
|
|
|
const Vec3fa wo = neg(ray.dir);
|
|
|
|
/* shade pixels */
|
|
if (ray.geomID != RTC_INVALID_GEOMETRY_ID) {
|
|
Vec3fa Ns = normalize(ray.Ng);
|
|
Sample sample;
|
|
sample.P = ray.org + ray.tfar * ray.dir;
|
|
sample.Ng = ray.Ng;
|
|
sample.Ns = Ns;
|
|
unsigned matId = data.scene->geometries[ray.geomID]->materialID;
|
|
unsigned lightID = data.scene->geometries[ray.geomID]->lightID;
|
|
|
|
if (lightID != unsigned(-1)) {
|
|
const Light* l = data.scene->lights[lightID];
|
|
Light_EvalRes evalRes = Lights_eval(l, sample, -wo);
|
|
|
|
L += evalRes.value;
|
|
return L;
|
|
} else {
|
|
sample.Ng = face_forward(ray.dir, normalize(sample.Ng));
|
|
sample.Ns = face_forward(ray.dir, normalize(sample.Ns));
|
|
|
|
/* calculate BRDF */
|
|
BRDF brdf;
|
|
std::vector<Material *> material_array = data.scene->materials;
|
|
Material__preprocess(material_array, matId, brdf, wo, sample);
|
|
|
|
/* test if volume bounding box */
|
|
if (brdf.name == "default") {
|
|
if (boundingBox) {
|
|
return {1, 0, 0};
|
|
}
|
|
|
|
/* non scattering raymarch implementation */
|
|
Ray secondary(sample.P, ray.dir, 0.001f, inf, 0.0f);
|
|
|
|
/* trace secondary ray */
|
|
rtcInitIntersectArguments(&iargs);
|
|
iargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
|
|
rtcIntersect1(data.g_scene, RTCRayHit_(secondary), &iargs);
|
|
RayStats_addRay(stats);
|
|
|
|
if (secondary.geomID != RTC_INVALID_GEOMETRY_ID) {
|
|
int num_steps = 100;
|
|
Vec3fa p_c = secondary.org;
|
|
Vec3fa end = secondary.org + secondary.tfar * secondary.dir;
|
|
Vec3fa step = (end - p_c) / num_steps;
|
|
float step_length = embree::length(step);
|
|
for (int i = 0; i < num_steps; i++) {
|
|
float density = 0;
|
|
if (data.densityGrid) {
|
|
density = data.densityGrid->sampleW(p_c); // Sample density from the grid
|
|
}
|
|
float temp = 0;
|
|
if (data.tempGrid) {
|
|
temp = data.tempGrid->sampleW(p_c); // Sample density from the grid
|
|
}
|
|
|
|
float g = 0.8; // asymmetry factor of the phase function
|
|
float angle = 1.0;
|
|
|
|
// HG phase function
|
|
float p = phase(g, angle);
|
|
float pdf;
|
|
Vec3f dir = sample_phase_function(-ray.org, g, RandomSampler_get2D(sampler), pdf);
|
|
|
|
// if -1.0 it means that we're out of the bounding box of the grid
|
|
if (density != -1.0f) {
|
|
density *= 10;
|
|
float redWavelength = 700;
|
|
float greenWavelength = 530;
|
|
float blueWavelength = 470;
|
|
Vec3fa emissive = Vec3fa(0.0, 0.0, 0.0);
|
|
if (temp != -1.0f && temp > 0.001) {
|
|
temp *= 1000;
|
|
emissive = Vec3f(blackbody_radiance_normalized(redWavelength, temp),
|
|
blackbody_radiance_normalized(greenWavelength, temp),
|
|
blackbody_radiance_normalized(blueWavelength, temp));
|
|
}
|
|
transmittance *= std::exp(-density * step_length);
|
|
// Update transmittance using exponential decay
|
|
L += emissive * transmittance;
|
|
}
|
|
p_c += step; // Move to the next point along the ray
|
|
}
|
|
|
|
Ray light(secondary.org + secondary.tfar * secondary.dir, ray.dir, 0.001f, inf, 0.0f);
|
|
|
|
/* trace light ray after medium escaped */
|
|
rtcInitIntersectArguments(&iargs);
|
|
iargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
|
|
rtcIntersect1(data.g_scene, RTCRayHit_(light), &iargs);
|
|
RayStats_addRay(stats);
|
|
|
|
if (light.geomID != RTC_INVALID_GEOMETRY_ID) {
|
|
unsigned lightID2 = data.scene->geometries[light.geomID]->lightID;
|
|
if (lightID2 != unsigned(-1)) {
|
|
const Light* l = data.scene->lights[lightID2];
|
|
Light_EvalRes evalRes = Lights_eval(l, sample, -wo);
|
|
|
|
L += evalRes.value * transmittance;
|
|
return L;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* sample BRDF at hit point */
|
|
Sample3f wi1;
|
|
Material__sample(material_array, matId, brdf, Lw, wo, sample, wi1, RandomSampler_get2D(sampler));
|
|
|
|
int id = (int) (RandomSampler_get1D(sampler) * data.scene->lights.size());
|
|
if (id == data.scene->lights.size())
|
|
id = data.scene->lights.size() - 1;
|
|
const Light* l = data.scene->lights[id];
|
|
|
|
Light_SampleRes ls = Lights_sample(l, sample, RandomSampler_get2D(sampler));
|
|
|
|
Vec3fa diffuse = Material__eval(material_array, matId, brdf, wo, sample, ls.dir);
|
|
|
|
|
|
/* initialize shadow ray */
|
|
Ray shadow(sample.P, ls.dir, 0.001f, ls.dist - 0.001f, 0.0f);
|
|
|
|
/* trace shadow ray */
|
|
RTCOccludedArguments sargs;
|
|
rtcInitOccludedArguments(&sargs);
|
|
sargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
|
|
rtcOccluded1(data.g_scene, RTCRay_(shadow), &sargs);
|
|
RayStats_addShadowRay(stats);
|
|
|
|
if (shadow.tfar >= 0.0f) {
|
|
L += diffuse * ls.weight;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return ACESFilm(L, 1);
|
|
}
|