ray-tracing2/ray-tracing-pbrt-scene/src/lib.rs

870 lines
29 KiB
Rust

use crate::{
bvh::Bvh,
either::Either,
scene::PbrtScene,
shape::{Shape, ShapeAlpha, ShapeType, TriangleMesh},
tokenizer::{Token, Tokenizer},
};
use material::PbrtMaterial;
use miette::{IntoDiagnostic, Result, bail, miette};
use ray_tracing_core::{
affine_transform::AffineTransform,
color::Color,
light::Light,
math::{Dir3, Pos3},
prelude::{Float, Rng},
};
use std::{
collections::HashMap,
path::{Path, PathBuf},
sync::Arc,
};
use texture::PbrtTexture;
#[macro_use]
mod tokenizer;
mod bvh;
mod either;
mod error;
mod material;
pub mod scene;
mod shape;
mod texture;
struct Lexer {
input: Tokenizer,
}
impl Lexer {
fn new(path: PathBuf, base_path: PathBuf) -> Result<Self> {
Ok(Self {
input: Tokenizer::new(path, base_path)?,
})
}
}
#[derive(Debug)]
#[allow(dead_code)]
pub enum CameraType {
Orthographic {
frame_aspect_ratio: Option<Float>,
screen_window: Option<Float>,
lens_radius: Float,
focal_distance: Float,
},
Perspective {
frame_aspect_ratio: Option<Float>,
screen_window: Option<Float>,
lens_radius: Float,
focal_distance: Float,
fov: Float,
},
}
#[derive(Debug)]
#[allow(dead_code)]
pub struct PbrtCamera {
pub camera_type: CameraType,
shutter_open: Float,
shutter_close: Float,
}
#[derive(Debug)]
enum Statement<R> {
AttributeBegin,
AttributeEnd,
WorldBegin,
Camera(PbrtCamera),
Include(String),
ConcatTransform(AffineTransform),
CoordinateSystem(String),
CoordSysTransform(String),
Shape(ShapeType, ShapeAlpha),
Unknown(String, Vec<Token>),
Transform(AffineTransform),
Texture(String, Arc<dyn PbrtTexture>),
Material(Arc<dyn PbrtMaterial<R>>),
MakeNamedMaterial(String, Arc<dyn PbrtMaterial<R>>),
NamedMaterial(String),
AreaLight(AreaLight),
}
#[derive(Debug, Clone)]
pub struct AreaLight {
pub color: Color,
}
impl<R: Rng> Light<R> for AreaLight {
fn emit(&self, w_in: Dir3, _rng: &mut R) -> Color {
if w_in.y() > 0.0 {
self.color
} else {
Color::black()
}
}
}
fn parse_look_at<R>(iter: &mut Tokenizer) -> Result<Statement<R>> {
let eye = Pos3::new(iter.parse_next()?, iter.parse_next()?, iter.parse_next()?);
let look_at = Pos3::new(iter.parse_next()?, iter.parse_next()?, iter.parse_next()?);
let up = Dir3::new(iter.parse_next()?, iter.parse_next()?, iter.parse_next()?);
Ok(Statement::ConcatTransform(
AffineTransform::look_at(eye, look_at, up)
.ok_or(miette!("Unable to calculate inverse of matrix"))?,
))
}
fn parse_shape<R>(iter: &mut Tokenizer) -> Result<Statement<R>> {
let shape_type = iter
.next_if_string_value()
.ok_or(miette!("unable to get shape type"))??;
match shape_type.as_str() {
"sphere" => {
let t = parse_dict!(iter =>
radius, Float, 1.0;
zmin, Float, {-radius};
zmax, Float, {radius};
phimax, Float, 360.0;
alpha, ShapeAlpha, ShapeAlpha::None
=>
radius, "float radius", iter.parse_parameter()?;
zmin, "float zmin", iter.parse_parameter()?;
zmax, "float zmax", iter.parse_parameter()?;
phimax, "float phimax", iter.parse_parameter()?;
alpha, "float alpha", ShapeAlpha::Value(iter.parse_parameter()?);
alpha, "texture alpha", ShapeAlpha::Texture(iter.parse_parameter()?)
);
Ok(Statement::Shape(
ShapeType::Sphere {
radius: t.radius,
zmin: t.zmin,
zmax: t.zmax,
phimax: t.phimax,
},
t.alpha,
))
}
"trianglemesh" => {
let t = parse_dict!(iter =>
p, Vec<Pos3>, Vec::new();
n, Vec<Dir3>, Vec::new();
s, Vec<Dir3>, Vec::new();
uv, Vec<[Float; 2]>, Vec::new();
indices, Vec<[usize;3]>, Vec::new();
alpha, ShapeAlpha, ShapeAlpha::None
=>
p, "point3 P", iter.parse_list_3(Pos3::new)?;
n, "normal N", iter.parse_list_3(Dir3::new)?;
s, "normal S", iter.parse_list_3(Dir3::new)?;
uv, "point2 uv", iter.parse_list_2(|u, v| [u, v])?;
indices, "integer indices", iter.parse_list_3(|a, b, c|[a, b, c])?;
alpha, "float alpha", ShapeAlpha::Value(iter.parse_parameter()?);
alpha, "texture alpha", ShapeAlpha::Texture(iter.parse_parameter()?)
);
if t.p.len() < 3 {
bail!("At least 3 points required.")
}
if t.indices.is_empty() && t.p.len() != 3 {
bail!("Indices required for trianglemesh with more than 3 points.")
}
if !t.n.is_empty() && t.n.len() != t.p.len() {
bail!("Number of normals not equal to number of positions.")
}
if !t.s.is_empty() && t.s.len() != t.p.len() {
bail!("Number of tangents not equal to number of positions.")
}
if !t.uv.is_empty() && t.uv.len() != t.p.len() {
bail!("Number of uvs not equal to number of positions.")
}
Ok(Statement::Shape(
ShapeType::TriangleMesh(Bvh::new(
TriangleMesh {
indices: t.indices,
p: t.p,
n: t.n,
s: t.s,
uv: t.uv,
},
8,
)),
t.alpha,
))
}
"bilinearmesh" => {
let t = parse_dict!(iter =>
p, Vec<Pos3>, Vec::new();
n, Vec<Dir3>, Vec::new();
uv, Vec<[Float; 2]>, Vec::new();
indices, Vec<usize>, Vec::new();
alpha, ShapeAlpha, ShapeAlpha::None
=>
p, "point3 P", iter.parse_list_3(Pos3::new)?;
n, "normal N", iter.parse_list_3(Dir3::new)?;
uv, "point2 uv", iter.parse_list_2(|u, v| [u, v])?;
indices, "integer indices", iter.parse_list()?;
alpha, "float alpha", ShapeAlpha::Value(iter.parse_parameter()?);
alpha, "texture alpha", ShapeAlpha::Texture(iter.parse_parameter()?)
);
if t.p.len() < 4 {
bail!("At least 4 points required.")
}
if t.indices.is_empty() && t.p.len() != 4 {
bail!("Indices required for trianglemesh with more than 4 points.")
}
if t.indices.len() % 4 != 0 {
bail!(
"number of indices must be divisible by 4. num indices: {}",
t.indices.len()
)
}
if !t.n.is_empty() && t.n.len() != t.p.len() {
bail!("Number of normals not equal to number of positions.")
}
if !t.uv.is_empty() && t.uv.len() != t.p.len() {
bail!("Number of uvs not equal to number of positions.")
}
Ok(Statement::Shape(
ShapeType::BilinearMesh {
indices: t.indices,
p: t.p,
n: t.n,
uv: t.uv,
},
t.alpha,
))
}
"loopsubdiv" => {
let t = parse_dict!(iter =>
levels, u32, 3;
indices, Vec<usize>, Vec::new();
p, Vec<Pos3>, Vec::new();
alpha, ShapeAlpha, ShapeAlpha::None
=>
levels, "integer levels", iter.parse_parameter()?;
indices, "integer indices", iter.parse_list()?;
p, "point3 P", iter.parse_list_3(Pos3::new)?;
alpha, "float alpha", ShapeAlpha::Value(iter.parse_parameter()?);
alpha, "texture alpha", ShapeAlpha::Texture(iter.parse_parameter()?)
);
if t.indices.is_empty() {
bail!("indices are a required field")
}
if t.p.is_empty() {
bail!("p is a required field")
}
Ok(Statement::Shape(
ShapeType::LoopSubDiv {
levels: t.levels,
indices: t.indices,
p: t.p,
},
t.alpha,
))
}
"disk" => {
let t = parse_dict!(iter =>
height, Float, 0.0;
radius, Float, 1.0;
innerradius, Float, 0.0;
phimax, Float, 360.0;
alpha, ShapeAlpha, ShapeAlpha::None
=>
height, "float height", iter.parse_parameter()?;
radius, "float radius", iter.parse_parameter()?;
innerradius, "float innerradius", iter.parse_parameter()?;
phimax, "float phimax", iter.parse_parameter()?;
alpha, "float alpha", ShapeAlpha::Value(iter.parse_parameter()?);
alpha, "texture alpha", ShapeAlpha::Texture(iter.parse_parameter()?)
);
Ok(Statement::Shape(
ShapeType::Disk {
height: t.height,
radius: t.radius,
innerradius: t.innerradius,
phimax: t.phimax,
},
t.alpha,
))
}
"plymesh" => {
let t = parse_dict!(iter =>
filename, String, String::new();
displacement, Option<String>, None;
edgelength, Float, 1.0;
alpha, ShapeAlpha, ShapeAlpha::None
=>
filename, "string filename", iter.parse_parameter()?;
displacement, "string displacement", Some(iter.parse_parameter()?);
edgelength, "float edgelength", iter.parse_parameter()?;
alpha, "float alpha", ShapeAlpha::Value(iter.parse_parameter()?);
alpha, "texture alpha", ShapeAlpha::Texture(iter.parse_parameter()?)
);
Ok(Statement::Shape(
ShapeType::PlyMesh {
filename: t.filename,
displacement: t.displacement,
edgelength: t.edgelength,
},
t.alpha,
))
}
_ => Err(miette!("Unknown shape {}", shape_type)),
}
}
fn parse_camera<R>(tokenizer: &mut Tokenizer) -> Result<Statement<R>> {
let camera_type = tokenizer
.next_if_string_value()
.ok_or(miette!("unable to get shape type"))??;
match camera_type.as_str() {
"orthographic" => {
let t = parse_dict!(tokenizer =>
shutteropen, Float, 0.0;
shutterclose, Float, 1.0;
frame_aspect_ratio, Option<Float>, None;
screen_window, Option<Float>, None;
lens_radius, Float, 0.0;
focal_distance, Float, Float::powi(10.0, 30)
=>
shutteropen, "float shutteropen", tokenizer.parse_parameter()?;
shutterclose, "float shutterclose", tokenizer.parse_parameter()?;
frame_aspect_ratio, "float frameaspectratio", Some(tokenizer.parse_parameter()?);
screen_window, "float screenwindow", Some(tokenizer.parse_parameter()?);
lens_radius, "float lensradius", tokenizer.parse_parameter()?;
focal_distance, "float focaldistance", tokenizer.parse_parameter()?
);
Ok(Statement::Camera(PbrtCamera {
camera_type: CameraType::Orthographic {
frame_aspect_ratio: t.frame_aspect_ratio,
screen_window: t.screen_window,
lens_radius: t.lens_radius,
focal_distance: t.focal_distance,
},
shutter_open: t.shutteropen,
shutter_close: t.shutterclose,
}))
}
"perspective" => {
let t = parse_dict!(tokenizer =>
shutteropen, Float, 0.0;
shutterclose, Float, 1.0;
frame_aspect_ratio, Option<Float>, None;
screen_window, Option<Float>, None;
lens_radius, Float, 0.0;
focal_distance, Float, Float::powi(10.0, 30);
fov, Float, 90.0
=>
shutteropen, "float shutteropen", tokenizer.parse_parameter()?;
shutterclose, "float shutterclose", tokenizer.parse_parameter()?;
frame_aspect_ratio, "float frameaspectratio", Some(tokenizer.parse_parameter()?);
screen_window, "float screenwindow", Some(tokenizer.parse_parameter()?);
lens_radius, "float lensradius", tokenizer.parse_parameter()?;
focal_distance, "float focaldistance", tokenizer.parse_parameter()?;
fov, "float fov", tokenizer.parse_parameter()?
);
Ok(Statement::Camera(PbrtCamera {
camera_type: CameraType::Perspective {
frame_aspect_ratio: t.frame_aspect_ratio,
screen_window: t.screen_window,
lens_radius: t.lens_radius,
focal_distance: t.focal_distance,
fov: t.fov,
},
shutter_open: t.shutteropen,
shutter_close: t.shutterclose,
}))
}
_ => Err(miette!("Unknown camera_type {}", camera_type)),
}
}
impl Lexer {
fn next<R: Rng>(&mut self, context: &PbrtContext<R>) -> Option<Result<Statement<R>>> {
match self.input.next() {
Some(Ok(Token::Identifier(s))) => match s.as_str() {
"AttributeBegin" => Some(Ok(Statement::AttributeBegin)),
"AttributeEnd" => Some(Ok(Statement::AttributeEnd)),
"Include" => {
let s = self
.input
.next_if_string_value()
.unwrap()
.unwrap()
.to_string();
Some(Ok(Statement::Include(s)))
}
"Camera" => Some(parse_camera(&mut self.input)),
"LookAt" => Some(parse_look_at(&mut self.input)),
"Identity" => Some(Ok(Statement::ConcatTransform(AffineTransform::identity()))),
"Translate" => Some(parse_translate(&mut self.input)),
"Scale" => Some(parse_scale(&mut self.input)),
"Shape" => Some(parse_shape(&mut self.input)),
"Rotate" => Some(parse_rotate(&mut self.input)),
"Transform" => Some(parse_transform(&mut self.input).map(Statement::Transform)),
"Texture" => Some(
texture::parse_texture(&mut self.input, context)
.map(|(name, texture)| Statement::Texture(name, texture)),
),
"Material" => Some(
material::parse_material(&mut self.input, context).map(Statement::Material),
),
"MakeNamedMaterial" => Some(
material::parse_make_named_material(&mut self.input, context)
.map(|(name, material)| Statement::MakeNamedMaterial(name, material)),
),
"NamedMaterial" => {
Some(self.input.next_string_value().map(Statement::NamedMaterial))
}
"ConcatTransform" => {
Some(parse_transform(&mut self.input).map(Statement::ConcatTransform))
}
"CoordinateSystem" => Some(match self.input.parse_parameter() {
Ok(s) => Ok(Statement::CoordinateSystem(s)),
Err(e) => Err(e),
}),
"CoordSysTransform" => Some(match self.input.parse_parameter() {
Ok(s) => Ok(Statement::CoordSysTransform(s)),
Err(e) => Err(e),
}),
"AreaLightSource" => Some(parse_area_light(&mut self.input)),
"WorldBegin" => Some(Ok(Statement::WorldBegin)),
_ => {
if s.chars().any(|c| !c.is_ascii_alphabetic()) {
Some(Err(miette!("malformed identifier")))
} else {
let mut v = Vec::new();
while let Some(p) =
self.input.next_if(|s| !matches!(s, Token::Identifier(_)))
{
match p {
Ok(c) => v.push(c),
Err(e) => return Some(Err(e)),
}
}
Some(Ok(Statement::Unknown(s, v)))
}
}
},
Some(Ok(s)) => Some(Err(miette!(
labels = vec![self.input.last_span_labeled(Some("here"))],
"expected identifier got {s:?}"
))),
Some(Err(e)) => Some(Err(e)),
None => None,
}
}
}
fn parse_area_light<R>(input: &mut Tokenizer) -> Result<Statement<R>> {
let s = input.next_string_value()?;
if s.as_str() != "diffuse" {
return Err(miette!(
labels = vec![input.last_span_labeled(Some("here"))],
"Only diffuse area light supported."
)
.with_source_code(input.get_src()));
}
Ok(Statement::AreaLight(parse_dict2!(input, AreaLight;
color, Color::white(), ["rgb L", texture::parse_rgb(input)?]
)))
}
fn parse_transform(input: &mut Tokenizer) -> Result<AffineTransform> {
input.next_expect_bracket_open()?;
let mut v = [0.0; 16];
for i in &mut v {
*i = input.parse_next()?;
}
input.next_expect_bracket_close()?;
if v[3] != 0.0 || v[7] != 0.0 || v[11] != 0.0 || v[15] != 1.0 {
bail!("invalid transform entry")
}
AffineTransform::new([
[v[0], v[4], v[8], v[12]],
[v[1], v[5], v[9], v[13]],
[v[2], v[6], v[10], v[14]],
[v[3], v[7], v[11], v[15]],
])
.ok_or(miette!("Unable to invert transformation"))
}
fn parse_translate<R>(iter: &mut Tokenizer) -> Result<Statement<R>> {
let pos = Pos3::new(
-iter.parse_next()?,
-iter.parse_next()?,
-iter.parse_next()?,
);
Ok(Statement::ConcatTransform(AffineTransform::translation(
pos,
)))
}
fn parse_scale<R>(iter: &mut Tokenizer) -> Result<Statement<R>> {
Ok(Statement::ConcatTransform(AffineTransform::scale(
iter.parse_next()?,
iter.parse_next()?,
iter.parse_next()?,
)))
}
fn parse_rotate<R>(iter: &mut Tokenizer) -> Result<Statement<R>> {
let angle = iter.parse_parameter()?;
let dir = Dir3::new(
iter.parse_parameter()?,
iter.parse_parameter()?,
iter.parse_parameter()?,
);
Ok(Statement::ConcatTransform(AffineTransform::rotation(
angle, dir,
)))
}
struct BytesToChar<I> {
count: usize,
iter: I,
}
impl<I> BytesToChar<I> {
fn new(iter: I) -> Self {
Self { count: 0, iter }
}
}
impl<I: Iterator<Item = Result<u8, std::io::Error>>> Iterator for BytesToChar<I> {
type Item = Result<(usize, char)>;
fn next(&mut self) -> Option<Self::Item> {
match self.iter.next()? {
Ok(a) => {
self.count += 1;
if a & 0x80 == 0 {
Some(Ok((self.count - 1, char::from(a))))
} else {
todo!()
}
}
Err(e) => Some(Err(e).into_diagnostic()),
}
}
}
struct Parser {
path: PathBuf,
base_path: PathBuf,
inner: Option<Box<Parser>>,
iter: Lexer,
}
impl Parser {
fn new(path: PathBuf, base_path: PathBuf) -> Result<Self> {
Ok(Self {
iter: Lexer::new(path.clone(), base_path.clone())?,
base_path,
path,
inner: None,
})
}
}
impl Parser {
fn next<R: Rng>(&mut self, context: &PbrtContext<R>) -> Option<Result<Statement<R>>> {
if let Some(iter) = &mut self.inner {
if let Some(statement) = iter.next(context) {
return Some(statement);
}
self.inner = None;
}
match self.iter.next(context) {
Some(Ok(Statement::Include(s))) => {
let path = self.path.parent().unwrap().join(s);
self.inner = Some(Box::new(Parser::new(path, self.base_path.clone()).unwrap()));
self.next(context)
}
Some(s) => Some(s),
None => None,
}
}
}
#[derive(Debug)]
pub struct Pbrt<R: Rng> {
pub settings: PbrtWorldSettings,
pub scene: PbrtScene<R>,
}
impl<R: Rng> Pbrt<R> {
fn new(settings: PbrtWorldSettings) -> Self {
Self {
settings,
scene: PbrtScene {
shapes: Vec::new(),
infinite_light: Some(scene::PbrtInfiniteLight {
color: Color::new(0.4, 0.45, 0.5),
}),
},
}
}
}
#[derive(Debug)]
pub struct PbrtWorldSettings {
pub camera: PbrtCamera,
pub camera_ctm: AffineTransform,
}
#[derive(Debug)]
pub struct PbrtContext<R> {
ctm: Vec<AffineTransform>,
textures: HashMap<String, Arc<dyn PbrtTexture>>,
material: Vec<Arc<dyn PbrtMaterial<R>>>,
area_light: Vec<AreaLight>,
materials: HashMap<String, Arc<dyn PbrtMaterial<R>>>,
}
impl<R> PbrtContext<R> {
fn new() -> Self {
Self {
ctm: vec![AffineTransform::identity()],
textures: HashMap::new(),
area_light: Vec::new(),
material: Vec::new(),
materials: HashMap::new(),
}
}
pub fn get_ctm(&self) -> AffineTransform {
*self.ctm.last().unwrap()
}
pub fn get_texture(&self, name: &String) -> Option<&Arc<dyn PbrtTexture>> {
self.textures.get(name)
}
pub fn get_named_material(&self, name: &String) -> Option<&Arc<dyn PbrtMaterial<R>>> {
self.materials.get(name)
}
pub fn get_material(&self) -> Option<&Arc<dyn PbrtMaterial<R>>> {
self.material.last()
}
fn push(&mut self) {
self.ctm.push(*self.ctm.last().unwrap());
if !self.material.is_empty() {
self.material
.push(Arc::clone(self.material.last().unwrap()));
}
if !self.area_light.is_empty() {
self.area_light
.push(self.area_light.last().unwrap().clone());
}
}
fn pop(&mut self) -> Result<()> {
self.ctm.pop();
if self.ctm.is_empty() {
return Err(miette!("Attributes do not matcch"));
}
self.material.pop();
self.area_light.pop();
Ok(())
}
}
fn inner_parse_pbrt<R: Rng + std::fmt::Debug>(
path: impl AsRef<Path> + std::fmt::Debug,
) -> Result<Pbrt<R>> {
// unwrap on context.last() ok because context is never empty
let mut context = PbrtContext::new();
let mut parser = Parser::new(
path.as_ref().to_path_buf(),
path.as_ref()
.parent()
.ok_or_else(|| miette!("parent from file not found"))?
.to_path_buf(),
)?;
// parse global settings
let mut camera = None;
let mut named_transforms = HashMap::new();
loop {
let p = parser.next(&context).ok_or_else(|| miette!(""))??;
// dbg!(&p);
match p {
Statement::AttributeBegin => context.push(),
Statement::AttributeEnd => {
context.pop()?;
}
Statement::Include(_) => unreachable!(),
Statement::ConcatTransform(affine_transform) => {
*context.ctm.last_mut().unwrap() *= affine_transform
}
Statement::Transform(affine_transform) => {
*context.ctm.last_mut().unwrap() = affine_transform
}
Statement::Unknown(s, _items) => {
eprintln!("Unknown statement: {s}")
}
Statement::Camera(c) => {
if camera.is_some() {
return Err(miette!("The camera can only be set once."));
}
camera = Some((c, context.get_ctm()));
named_transforms.insert(String::from("camera"), context.get_ctm());
}
Statement::CoordinateSystem(s) => {
named_transforms.insert(s, context.get_ctm());
}
Statement::CoordSysTransform(s) => {
*context.ctm.last_mut().unwrap() = *named_transforms
.get(&s)
.ok_or_else(|| miette!("unknown transform"))?;
}
Statement::WorldBegin => break,
s => bail!("unexpected statemnet in global settings: {s:?}"),
}
}
let (camera, camera_ctm) = camera.ok_or(miette!("A camera has to be specified"))?;
let mut pbrt = Pbrt::new(PbrtWorldSettings { camera, camera_ctm });
context.ctm = vec![AffineTransform::identity()];
// let mut context_material = vec![];
while let Some(p) = parser.next(&context).transpose()? {
match p {
Statement::AttributeBegin => context.push(),
Statement::AttributeEnd => {
context.pop()?;
}
Statement::Include(_) => unreachable!(),
Statement::ConcatTransform(affine_transform) => {
*context.ctm.last_mut().unwrap() *= affine_transform
}
Statement::Transform(affine_transform) => {
*context.ctm.last_mut().unwrap() = affine_transform
}
Statement::Shape(shape_type, shape_alpha) => {
// dbg!(&context);
if context.area_light.is_empty() {
pbrt.scene.shapes.push(Shape {
ctm: context.get_ctm(),
material: Either::A(Arc::clone(
context
.material
.last()
.ok_or_else(|| miette!("No material specified"))?,
)),
obj: shape_type,
alpha: shape_alpha,
});
} else {
pbrt.scene.shapes.push(Shape {
ctm: context.get_ctm(),
material: Either::B(context.area_light.last().unwrap().clone()),
obj: shape_type,
alpha: shape_alpha,
});
}
}
Statement::CoordinateSystem(s) => {
named_transforms.insert(s, context.get_ctm());
}
Statement::CoordSysTransform(s) => {
*context.ctm.last_mut().unwrap() = *named_transforms
.get(&s)
.ok_or_else(|| miette!("unknown transform"))?;
}
Statement::Material(m) => {
if context.material.is_empty() {
context.material.push(m);
} else {
*context.material.last_mut().unwrap() = m;
}
}
Statement::AreaLight(l) => {
if context.area_light.is_empty() {
context.area_light.push(l);
} else {
*context.area_light.last_mut().unwrap() = l;
}
}
Statement::MakeNamedMaterial(n, m) => {
context.materials.insert(n, m);
}
Statement::NamedMaterial(n) => {
let m = Arc::clone(
context
.get_named_material(&n)
.ok_or_else(|| miette!("Unknown named material {n}"))?,
);
if context.material.is_empty() {
context.material.push(m);
} else {
*context.material.last_mut().unwrap() = m;
}
}
Statement::Unknown(s, _items) => {
eprintln!("Unknown statement: {s}")
}
Statement::Texture(name, texture) => {
context.textures.insert(name, texture);
}
s => bail!("unexpected statemnet in world settings: {s:?}"),
}
}
// dbg!(context);
Ok(pbrt)
}
pub fn parse_pbrt_v4<R: Rng + std::fmt::Debug>(
path: impl AsRef<Path> + std::fmt::Debug,
) -> Result<Pbrt<R>> {
inner_parse_pbrt(path)
}