rendering-in-cgi/Assignments/Assignment3/Application3.cpp
2024-06-27 08:54:09 +02:00

241 lines
7.9 KiB
C++

#include "Application3.h"
#include "math/vec3fa.h"
#define EPS 0.001f
void Application3::initScene() {
Data_Constructor(&data, 1, 8);
/* select scene here */
standardScene();
// causticScene();
}
void Application3::standardScene() {
FileName file = workingDir + FileName("Framework/scenes/cornell_box.obj");
/* set default camera */
camera.from = Vec3fa(278, 273, -800);
camera.to = Vec3fa(278, 273, 0);
Ref<SceneGraph::GroupNode> sceneGraph = loadOBJ(file, false).cast<SceneGraph::GroupNode>();
auto light = new SceneGraph::QuadLightMesh(Vec3fa(343.0, 548.0, 227.0), Vec3fa(213.0, 548.0, 332.0),
Vec3fa(343.0, 548.0, 332.0),
Vec3fa(213.0, 548.0, 227.0), Vec3fa(25, 25, 25));
sceneGraph->add(light);
Ref<SceneGraph::GroupNode> flattened_scene = SceneGraph::flatten(sceneGraph, SceneGraph::INSTANCING_NONE);
Scene* scene = new Scene;
scene->add(flattened_scene);
sceneGraph = nullptr;
flattened_scene = nullptr;
auto renderScene = new RenderScene(g_device, scene);
g_render_scene = renderScene;
data.scene = renderScene;
scene = nullptr;
}
void Application3::causticScene() {
FileName file = workingDir + FileName("Framework/scenes/caustics/ring.obj");
/* set default camera */
camera.from = Vec3fa(1, 2, 1);
camera.to = Vec3fa(0, 0, 0);
camera.fov = 60;
Ref<SceneGraph::GroupNode> sceneGraph = loadOBJ(file, false).cast<SceneGraph::GroupNode>();
auto light = new SceneGraph::QuadLightMesh(Vec3fa(0.1, 1.0, 2.0), Vec3fa(-0.1, 1.2, 2.0),
Vec3fa(-0.1, 1.0, 2.0), Vec3fa(0.1, 1.2, 2.0),
Vec3fa(50, 50, 50) * 10);
sceneGraph->add(light);
Ref<SceneGraph::GroupNode> flattened_scene = SceneGraph::flatten(sceneGraph, SceneGraph::INSTANCING_NONE);
Scene* scene = new Scene;
scene->add(flattened_scene);
sceneGraph = nullptr;
flattened_scene = nullptr;
auto renderScene = new RenderScene(g_device, scene);
g_render_scene = renderScene;
data.scene = renderScene;
scene = nullptr;
}
/*
IMPORTANT: use your own path tracing implementation from the 1st assignment!!
the only change that we made was introduction of the RandomSamplerWrapper. It wrappes the sampling routines, so you could introduce a new sampler for Metropolis Light Transport and by overwriting RandomSamplerWrapper methods: get1D(), get2D()...
also the drawGUI() function now invokes ApplicationIntegrator::drawGUI();
*/
/* task that renders a single screen tile */
Vec3fa Application3::renderPixel(float x, float y, const ISPCCamera& camera, RayStats& stats, RandomSamplerWrapper& sampler) {
if (method == 0) {
return renderPixelPT(x,y , camera, stats, sampler);
} else if (method == 1) {
return renderPixelNEE(x,y , camera, stats, sampler);
} else {
return Vec3fa(0.0);
}
}
Vec3fa Application3::renderPixelPT(float x, float y, const ISPCCamera& camera, RayStats& stats, RandomSamplerWrapper& sampler) {
/* radiance accumulator and weight */
Vec3fa L = Vec3fa(0.0f);
Vec3fa Lw = Vec3fa(1.0f);
/* initialize ray */
Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x * camera.xfm.l.vx + y * camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f,
inf);
for (int i = 0; i < ray_depth; i++) {
/* intersect ray with scene */
RTCIntersectArguments iargs;
rtcInitIntersectArguments(&iargs);
iargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
rtcIntersect1(data.g_scene, RTCRayHit_(ray), &iargs);
RayStats_addRay(stats);
const Vec3fa wo = neg(ray.dir);
/* shade pixels */
if (ray.geomID == RTC_INVALID_GEOMETRY_ID) {
break;
}
Vec3fa Ns = normalize(ray.Ng);
Sample sample;
sample.P = ray.org + ray.tfar * ray.dir;
sample.Ng = ray.Ng;
sample.Ns = Ns;
int matId = data.scene->geometries[ray.geomID]->materialID;
unsigned lightID = data.scene->geometries[ray.geomID]->lightID;
sample.Ng = face_forward(ray.dir, normalize(sample.Ng));
sample.Ns = face_forward(ray.dir, normalize(sample.Ns));
// evaluate light
if (lightID != unsigned(-1)) {
const Light* l = data.scene->lights[lightID];
Light_EvalRes evalRes = Lights_eval(l, sample, -wo);
return Lw * evalRes.value;
break;
}
/* calculate BRDF */
BRDF brdf;
std::vector<Material *> material_array = data.scene->materials;
Material__preprocess(material_array, matId, brdf, wo, sample);
Vec2f uv = sampler.get2D();
Sample3f wi;
Vec3fa diffuse = Material__sample(material_array, matId, brdf, Lw, wo, sample, wi, uv);
Lw *= diffuse / wi.pdf;
ray = Ray(sample.P,wi.v,EPS,inf);
}
return L;
}
Vec3fa Application3::renderPixelNEE(float x, float y, const ISPCCamera& camera, RayStats& stats, RandomSamplerWrapper& sampler) {
/* radiance accumulator and weight */
Vec3fa L = Vec3fa(0.0f);
Vec3fa Lw = Vec3fa(1.0f);
/* initialize ray */
Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x * camera.xfm.l.vx + y * camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f,
inf);
for (int i = 0; i < ray_depth; i++) {
/* intersect ray with scene */
RTCIntersectArguments iargs;
rtcInitIntersectArguments(&iargs);
iargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
rtcIntersect1(data.g_scene, RTCRayHit_(ray), &iargs);
RayStats_addRay(stats);
const Vec3fa wo = neg(ray.dir);
/* shade pixels */
if (ray.geomID == RTC_INVALID_GEOMETRY_ID) {
break;
}
Vec3fa Ns = normalize(ray.Ng);
Sample sample;
sample.P = ray.org + ray.tfar * ray.dir;
sample.Ng = ray.Ng;
sample.Ns = Ns;
int matId = data.scene->geometries[ray.geomID]->materialID;
unsigned lightID = data.scene->geometries[ray.geomID]->lightID;
sample.Ng = face_forward(ray.dir, normalize(sample.Ng));
sample.Ns = face_forward(ray.dir, normalize(sample.Ns));
// include direct light on first ray
if (lightID != unsigned(-1)) {
if (i == 0) {
const Light* l = data.scene->lights[lightID];
Light_EvalRes evalRes = Lights_eval(l, sample, -wo);
L += Lw * evalRes.value;
}
break;
}
/* calculate BRDF */
BRDF brdf;
std::vector<Material *> material_array = data.scene->materials;
Material__preprocess(material_array, matId, brdf, wo, sample);
/* Light ray */
int id = (int)(sampler.get1D() * data.scene->lights.size());
if (id == data.scene->lights.size())
id = data.scene->lights.size() - 1;
const Light* l = data.scene->lights[id];
Light_SampleRes ls = Lights_sample(l, sample, sampler.get2D());
Vec3fa light_diffuse = Material__eval(material_array, matId, brdf, wo, sample, ls.dir);
/* initialize shadow ray */
Ray shadow(sample.P, ls.dir, EPS, ls.dist - EPS, 0.0f);
/* trace shadow ray */
RTCOccludedArguments sargs;
rtcInitOccludedArguments(&sargs);
sargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
rtcOccluded1(data.g_scene, RTCRay_(shadow), &sargs);
RayStats_addShadowRay(stats);
/* add light contribution if not occluded (NEE) */
if (shadow.tfar >= 0.0f) {
// L += Lw * light_diffuse * ls.weight;
L += Lw * light_diffuse * ls.weight * dot(sample.Ng, ls.dir) / data.scene->lights.size();
// L += Lw * light_diffuse * ls.weight/ data.scene->lights.size();
}
Vec2f uv = sampler.get2D();
Sample3f wi;
Vec3fa diffuse = Material__sample(material_array, matId, brdf, Lw, wo, sample, wi, uv);
Lw *= diffuse / wi.pdf;
ray = Ray(sample.P,wi.v,EPS,inf);
}
return L;
}