826 lines
		
	
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			826 lines
		
	
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2009-2021 Intel Corporation
 | |
| // SPDX-License-Identifier: Apache-2.0
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "../common/geometry.h"
 | |
| #include "../common/buffer.h"
 | |
| #include "half_edge.h"
 | |
| #include "catmullclark_coefficients.h"
 | |
| 
 | |
| namespace embree
 | |
| {
 | |
|   struct __aligned(64) FinalQuad {
 | |
|     Vec3fa vtx[4];
 | |
|   };
 | |
| 
 | |
|   template<typename Vertex, typename Vertex_t = Vertex>
 | |
|     struct __aligned(64) CatmullClark1RingT
 | |
|   {
 | |
|     ALIGNED_STRUCT_(64);
 | |
|     
 | |
|     int border_index;                                   //!< edge index where border starts
 | |
|     unsigned int face_valence;                          //!< number of adjacent quad faces
 | |
|     unsigned int edge_valence;                          //!< number of adjacent edges (2*face_valence)
 | |
|     float vertex_crease_weight;                         //!< weight of vertex crease (0 if no vertex crease)
 | |
|     DynamicStackArray<float,16,MAX_RING_FACE_VALENCE> crease_weight; //!< edge crease weights for each adjacent edge
 | |
|     float vertex_level;                                 //!< maximum level of all adjacent edges
 | |
|     float edge_level;                                   //!< level of first edge
 | |
|     unsigned int eval_start_index;                      //!< topology dependent index to start evaluation
 | |
|     unsigned int eval_unique_identifier;                //!< topology dependent unique identifier for this ring 
 | |
|     Vertex vtx;                                         //!< center vertex
 | |
|     DynamicStackArray<Vertex,32,MAX_RING_EDGE_VALENCE> ring;  //!< ring of neighboring vertices
 | |
|    
 | |
|   public:
 | |
|     CatmullClark1RingT () 
 | |
|     : eval_start_index(0), eval_unique_identifier(0) {} // FIXME: default constructor should be empty
 | |
| 
 | |
|     /*! calculates number of bytes required to serialize this structure */
 | |
|     __forceinline size_t bytes() const
 | |
|     {
 | |
|       size_t ofs = 0;
 | |
|       ofs += sizeof(border_index);
 | |
|       ofs += sizeof(face_valence);
 | |
|       assert(2*face_valence == edge_valence);
 | |
|       ofs += sizeof(vertex_crease_weight);
 | |
|       ofs += face_valence*sizeof(float);
 | |
|       ofs += sizeof(vertex_level);
 | |
|       ofs += sizeof(edge_level);
 | |
|       ofs += sizeof(eval_start_index);
 | |
|       ofs += sizeof(eval_unique_identifier);
 | |
|       ofs += sizeof(vtx);
 | |
|       ofs += edge_valence*sizeof(Vertex);
 | |
|       return ofs;
 | |
|     }
 | |
| 
 | |
|     template<typename Ty>
 | |
|     static __forceinline void store(char* ptr, size_t& ofs, const Ty& v) {
 | |
|       *(Ty*)&ptr[ofs] = v; ofs += sizeof(Ty);
 | |
|     }
 | |
| 
 | |
|     template<typename Ty>
 | |
|     static __forceinline void load(char* ptr, size_t& ofs, Ty& v) {
 | |
|       v = *(Ty*)&ptr[ofs]; ofs += sizeof(Ty);
 | |
|     }
 | |
| 
 | |
|     /*! serializes the ring to some memory location */
 | |
|     __forceinline void serialize(char* ptr, size_t& ofs) const
 | |
|     {
 | |
|       store(ptr,ofs,border_index);
 | |
|       store(ptr,ofs,face_valence);
 | |
|       store(ptr,ofs,vertex_crease_weight);
 | |
|       for (size_t i=0; i<face_valence; i++)
 | |
|         store(ptr,ofs,crease_weight[i]);
 | |
|       store(ptr,ofs,vertex_level);
 | |
|       store(ptr,ofs,edge_level);
 | |
|       store(ptr,ofs,eval_start_index);
 | |
|       store(ptr,ofs,eval_unique_identifier);
 | |
|       Vertex_t::storeu(&ptr[ofs],vtx); ofs += sizeof(Vertex);
 | |
|       for (size_t i=0; i<edge_valence; i++) {
 | |
|         Vertex_t::storeu(&ptr[ofs],ring[i]); ofs += sizeof(Vertex);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /*! deserializes the ring from some memory location */
 | |
|     __forceinline void deserialize(char* ptr, size_t& ofs)
 | |
|     {
 | |
|       load(ptr,ofs,border_index);
 | |
|       load(ptr,ofs,face_valence);
 | |
|       edge_valence = 2*face_valence;
 | |
|       load(ptr,ofs,vertex_crease_weight);
 | |
|       for (size_t i=0; i<face_valence; i++)
 | |
|         load(ptr,ofs,crease_weight[i]);
 | |
|       load(ptr,ofs,vertex_level);
 | |
|       load(ptr,ofs,edge_level);
 | |
|       load(ptr,ofs,eval_start_index);
 | |
|       load(ptr,ofs,eval_unique_identifier);
 | |
|       vtx = Vertex_t::loadu(&ptr[ofs]); ofs += sizeof(Vertex);
 | |
|       for (size_t i=0; i<edge_valence; i++) {
 | |
|         ring[i] = Vertex_t::loadu(&ptr[ofs]); ofs += sizeof(Vertex);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     __forceinline bool hasBorder() const {
 | |
|       return border_index != -1;
 | |
|     }
 | |
|     
 | |
|     __forceinline const Vertex& front(size_t i) const {
 | |
|       assert(edge_valence>i);
 | |
|       return ring[i];
 | |
|     }
 | |
|     
 | |
|     __forceinline const Vertex& back(size_t i) const {
 | |
|       assert(edge_valence>=i);
 | |
|       return ring[edge_valence-i];
 | |
|     }
 | |
|     
 | |
|     __forceinline bool has_last_face() const {
 | |
|       return (size_t)border_index != (size_t)edge_valence-2;
 | |
|     }
 | |
| 
 | |
|     __forceinline bool has_opposite_front(size_t i) const {
 | |
|       return (size_t)border_index != 2*i;
 | |
|     }
 | |
| 
 | |
|     __forceinline bool has_opposite_back(size_t i) const {
 | |
|       return (size_t)border_index != ((size_t)edge_valence-2-2*i);
 | |
|     }
 | |
|     
 | |
|     __forceinline BBox3fa bounds() const
 | |
|     {
 | |
|       BBox3fa bounds ( vtx );
 | |
|       for (size_t i = 0; i<edge_valence ; i++)
 | |
| 	bounds.extend( ring[i] );
 | |
|       return bounds;
 | |
|     }
 | |
| 
 | |
|     /*! initializes the ring from the half edge structure */
 | |
|     __forceinline void init(const HalfEdge* const h, const char* vertices, size_t stride) 
 | |
|     {
 | |
|       border_index = -1;
 | |
|       vtx = Vertex_t::loadu(vertices+h->getStartVertexIndex()*stride);
 | |
|       vertex_crease_weight = h->vertex_crease_weight;
 | |
|       
 | |
|       HalfEdge* p = (HalfEdge*) h;
 | |
| 
 | |
|       unsigned i=0;
 | |
|       unsigned min_vertex_index = (unsigned)-1;
 | |
|       unsigned min_vertex_index_face = (unsigned)-1;
 | |
|       edge_level = p->edge_level;
 | |
|       vertex_level = 0.0f;
 | |
| 
 | |
|       do
 | |
|       {
 | |
|         vertex_level = max(vertex_level,p->edge_level);
 | |
|         crease_weight[i/2] = p->edge_crease_weight;
 | |
|         assert(p->hasOpposite() || p->edge_crease_weight == float(inf));
 | |
| 
 | |
|         /* store first two vertices of face */
 | |
|         p = p->next();
 | |
|         const unsigned index0 = p->getStartVertexIndex();
 | |
|         ring[i++] = Vertex_t::loadu(vertices+index0*stride);
 | |
|         if (index0 < min_vertex_index) { min_vertex_index = index0; min_vertex_index_face = i>>1; }
 | |
|         p = p->next();
 | |
| 
 | |
|         const unsigned index1 = p->getStartVertexIndex();
 | |
|         ring[i++] = Vertex_t::loadu(vertices+index1*stride);
 | |
|         p = p->next();
 | |
|        
 | |
|         /* continue with next face */
 | |
|         if (likely(p->hasOpposite())) 
 | |
|           p = p->opposite();
 | |
|         
 | |
|         /* if there is no opposite go the long way to the other side of the border */
 | |
|         else
 | |
|         {
 | |
|           /* find minimum start vertex */
 | |
|           const unsigned index0 = p->getStartVertexIndex();
 | |
|           if (index0 < min_vertex_index) { min_vertex_index = index0; min_vertex_index_face = i>>1; }
 | |
| 
 | |
|           /*! mark first border edge and store dummy vertex for face between the two border edges */
 | |
|           border_index = i;
 | |
|           crease_weight[i/2] = inf; 
 | |
|           ring[i++] = Vertex_t::loadu(vertices+index0*stride);
 | |
|           ring[i++] = vtx; // dummy vertex
 | |
|           	  
 | |
|           /*! goto other side of border */
 | |
|           p = (HalfEdge*) h;
 | |
|           while (p->hasOpposite()) 
 | |
|             p = p->opposite()->next();
 | |
|         }
 | |
| 
 | |
|       } while (p != h); 
 | |
| 
 | |
|       edge_valence = i;
 | |
|       face_valence = i >> 1;
 | |
|       eval_unique_identifier = min_vertex_index;
 | |
|       eval_start_index = min_vertex_index_face;
 | |
| 
 | |
|       assert( hasValidPositions() );
 | |
|     }
 | |
|       
 | |
|     __forceinline void subdivide(CatmullClark1RingT& dest) const
 | |
|     {
 | |
|       dest.edge_level             = 0.5f*edge_level;
 | |
|       dest.vertex_level           = 0.5f*vertex_level;
 | |
|       dest.face_valence           = face_valence;
 | |
|       dest.edge_valence           = edge_valence;
 | |
|       dest.border_index           = border_index;
 | |
|       dest.vertex_crease_weight   = max(0.0f,vertex_crease_weight-1.0f);
 | |
|       dest.eval_start_index       = eval_start_index;
 | |
|       dest.eval_unique_identifier = eval_unique_identifier;
 | |
| 
 | |
|       /* calculate face points */
 | |
|       Vertex_t S = Vertex_t(0.0f);
 | |
|       for (size_t i=0; i<face_valence; i++) 
 | |
|       {
 | |
|         size_t face_index = i + eval_start_index; if (face_index >= face_valence) face_index -= face_valence; assert(face_index < face_valence);
 | |
|         size_t index0 = 2*face_index+0; if (index0 >= edge_valence) index0 -= edge_valence; assert(index0 < edge_valence);
 | |
|         size_t index1 = 2*face_index+1; if (index1 >= edge_valence) index1 -= edge_valence; assert(index1 < edge_valence);
 | |
|         size_t index2 = 2*face_index+2; if (index2 >= edge_valence) index2 -= edge_valence; assert(index2 < edge_valence);
 | |
|         S += dest.ring[index1] = ((vtx + ring[index1]) + (ring[index0] + ring[index2])) * 0.25f;
 | |
|       }
 | |
|       
 | |
|       /* calculate new edge points */
 | |
|       size_t num_creases = 0;
 | |
|       array_t<size_t,MAX_RING_FACE_VALENCE> crease_id;
 | |
| 
 | |
|       for (size_t i=0; i<face_valence; i++)
 | |
|       {
 | |
|         size_t face_index = i + eval_start_index;
 | |
|         if (face_index >= face_valence) face_index -= face_valence;
 | |
|         const float edge_crease = crease_weight[face_index];
 | |
|         dest.crease_weight[face_index] = max(edge_crease-1.0f,0.0f);
 | |
|       
 | |
|         size_t index      = 2*face_index;
 | |
|         size_t prev_index = face_index == 0 ? edge_valence-1 : 2*face_index-1;
 | |
|         size_t next_index = 2*face_index+1;
 | |
| 
 | |
|         const Vertex_t v = vtx + ring[index];
 | |
|         const Vertex_t f = dest.ring[prev_index] + dest.ring[next_index];
 | |
|         S += ring[index];
 | |
|                 
 | |
|         /* fast path for regular edge points */
 | |
|         if (likely(edge_crease <= 0.0f)) {
 | |
|           dest.ring[index] = (v+f) * 0.25f;
 | |
|         }
 | |
|         
 | |
|         /* slower path for hard edge rule */
 | |
|         else {
 | |
|           crease_id[num_creases++] = face_index;
 | |
|           dest.ring[index] = v*0.5f;
 | |
| 	  
 | |
|           /* even slower path for blended edge rule */
 | |
|           if (unlikely(edge_crease < 1.0f)) {
 | |
|             dest.ring[index] = lerp((v+f)*0.25f,v*0.5f,edge_crease);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       /* compute new vertex using smooth rule */
 | |
|       const float inv_face_valence = 1.0f / (float)face_valence;
 | |
|       const Vertex_t v_smooth = (Vertex_t) madd(inv_face_valence,S,(float(face_valence)-2.0f)*vtx)*inv_face_valence;
 | |
|       dest.vtx = v_smooth;
 | |
|       
 | |
|       /* compute new vertex using vertex_crease_weight rule */
 | |
|       if (unlikely(vertex_crease_weight > 0.0f)) 
 | |
|       {
 | |
|         if (vertex_crease_weight >= 1.0f) {
 | |
|           dest.vtx = vtx;
 | |
|         } else {
 | |
|           dest.vtx = lerp(v_smooth,vtx,vertex_crease_weight);
 | |
|         }
 | |
|         return;
 | |
|       }
 | |
|       
 | |
|       /* no edge crease rule and dart rule */
 | |
|       if (likely(num_creases <= 1))
 | |
|         return;
 | |
|       
 | |
|       /* compute new vertex using crease rule */
 | |
|       if (likely(num_creases == 2)) 
 | |
|       {
 | |
|         /* update vertex using crease rule */
 | |
|         const size_t crease0 = crease_id[0], crease1 = crease_id[1];
 | |
|         const Vertex_t v_sharp = (Vertex_t)(ring[2*crease0] + 6.0f*vtx + ring[2*crease1]) * (1.0f / 8.0f);
 | |
|         dest.vtx = v_sharp;
 | |
| 
 | |
|         /* update crease_weights using chaikin rule */
 | |
|         const float crease_weight0 = crease_weight[crease0], crease_weight1 = crease_weight[crease1];
 | |
|         dest.crease_weight[crease0] = max(0.25f*(3.0f*crease_weight0 + crease_weight1)-1.0f,0.0f);
 | |
|         dest.crease_weight[crease1] = max(0.25f*(3.0f*crease_weight1 + crease_weight0)-1.0f,0.0f);
 | |
| 
 | |
|         /* interpolate between sharp and smooth rule */
 | |
|         const float v_blend = 0.5f*(crease_weight0+crease_weight1);
 | |
|         if (unlikely(v_blend < 1.0f)) {
 | |
|           dest.vtx = lerp(v_smooth,v_sharp,v_blend);
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       /* compute new vertex using corner rule */
 | |
|       else {
 | |
|         dest.vtx = vtx;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     __forceinline bool isRegular1() const 
 | |
|     {
 | |
|       if (border_index == -1) {
 | |
| 	if (face_valence == 4) return true;
 | |
|       } else {
 | |
| 	if (face_valence < 4) return true;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     __forceinline size_t numEdgeCreases() const
 | |
|     {
 | |
|       ssize_t numCreases = 0;
 | |
|       for (size_t i=0; i<face_valence; i++) {
 | |
|         numCreases += crease_weight[i] > 0.0f;
 | |
|       }
 | |
|       return numCreases;
 | |
|     }
 | |
| 
 | |
|     enum Type {
 | |
|       TYPE_NONE            = 0,      //!< invalid type
 | |
|       TYPE_REGULAR         = 1,      //!< regular patch when ignoring creases
 | |
|       TYPE_REGULAR_CREASES = 2,      //!< regular patch when considering creases
 | |
|       TYPE_GREGORY         = 4,      //!< gregory patch when ignoring creases
 | |
|       TYPE_GREGORY_CREASES = 8,      //!< gregory patch when considering creases
 | |
|       TYPE_CREASES         = 16      //!< patch has crease features
 | |
|     };
 | |
|     
 | |
|     __forceinline Type type() const
 | |
|     {
 | |
|       /* check if there is an edge crease anywhere */      
 | |
|       const size_t numCreases = numEdgeCreases();
 | |
|       const bool noInnerCreases = hasBorder() ? numCreases == 2 : numCreases == 0;
 | |
| 
 | |
|       Type crease_mask = (Type) (TYPE_REGULAR | TYPE_GREGORY);
 | |
|       if (noInnerCreases ) crease_mask = (Type) (crease_mask | TYPE_REGULAR_CREASES | TYPE_GREGORY_CREASES);
 | |
|       if (numCreases != 0) crease_mask = (Type) (crease_mask | TYPE_CREASES);
 | |
| 
 | |
|       /* calculate if this vertex is regular */
 | |
|       bool hasBorder = border_index != -1;
 | |
|       if (face_valence == 2 && hasBorder) {
 | |
|         if      (vertex_crease_weight == 0.0f      ) return (Type) (crease_mask & (TYPE_REGULAR | TYPE_REGULAR_CREASES | TYPE_GREGORY | TYPE_GREGORY_CREASES | TYPE_CREASES));
 | |
|         else if (vertex_crease_weight == float(inf)) return (Type) (crease_mask & (TYPE_REGULAR | TYPE_REGULAR_CREASES | TYPE_GREGORY | TYPE_GREGORY_CREASES | TYPE_CREASES));
 | |
|         else                                         return TYPE_CREASES;
 | |
|       }
 | |
|       else if (vertex_crease_weight != 0.0f)         return TYPE_CREASES;
 | |
|       else if (face_valence == 3 &&  hasBorder)      return (Type) (crease_mask & (TYPE_REGULAR | TYPE_REGULAR_CREASES | TYPE_GREGORY | TYPE_GREGORY_CREASES | TYPE_CREASES));
 | |
|       else if (face_valence == 4 && !hasBorder)      return (Type) (crease_mask & (TYPE_REGULAR | TYPE_REGULAR_CREASES | TYPE_GREGORY | TYPE_GREGORY_CREASES | TYPE_CREASES));
 | |
|       else                                           return (Type) (crease_mask & (TYPE_GREGORY | TYPE_GREGORY_CREASES | TYPE_CREASES));
 | |
|     }
 | |
| 
 | |
|     __forceinline bool isFinalResolution(float res) const {
 | |
|       return vertex_level <= res;
 | |
|     }
 | |
| 
 | |
|     /* computes the limit vertex */
 | |
|     __forceinline Vertex getLimitVertex() const
 | |
|     {
 | |
|       /* return hard corner */ 
 | |
|       if (unlikely(std::isinf(vertex_crease_weight)))
 | |
|         return vtx;
 | |
| 
 | |
|       /* border vertex rule */
 | |
|       if (unlikely(border_index != -1))
 | |
|       {
 | |
| 	const unsigned int second_border_index = border_index+2 >= int(edge_valence) ? 0 : border_index+2;
 | |
| 	return (4.0f * vtx + (ring[border_index] + ring[second_border_index])) * 1.0f/6.0f;
 | |
|       }
 | |
|       
 | |
|       Vertex_t F( 0.0f );
 | |
|       Vertex_t E( 0.0f );
 | |
|       
 | |
|       assert(eval_start_index < face_valence);
 | |
| 
 | |
|       for (size_t i=0; i<face_valence; i++) {
 | |
|         size_t index = i+eval_start_index;
 | |
|         if (index >= face_valence) index -= face_valence;
 | |
|         F += ring[2*index+1];
 | |
|         E += ring[2*index];
 | |
|       }
 | |
| 
 | |
|       const float n = (float)face_valence;
 | |
|       return (Vertex_t)(n*n*vtx+4.0f*E+F) / ((n+5.0f)*n);      
 | |
|     }
 | |
|     
 | |
|     /* gets limit tangent in the direction of edge vtx -> ring[0] */
 | |
|     __forceinline Vertex getLimitTangent() const 
 | |
|     {
 | |
|       if (unlikely(std::isinf(vertex_crease_weight)))
 | |
|         return ring[0] - vtx;
 | |
| 
 | |
|       /* border vertex rule */
 | |
|       if (unlikely(border_index != -1))
 | |
|       {	
 | |
| 	if (border_index != (int)edge_valence-2 ) {
 | |
| 	  return ring[0] - vtx; 
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 	  const unsigned int second_border_index = border_index+2 >= int(edge_valence) ? 0 : border_index+2;
 | |
| 	  return (ring[second_border_index] - ring[border_index]) * 0.5f;
 | |
| 	}
 | |
|       }
 | |
|       
 | |
|       Vertex_t alpha( 0.0f );
 | |
|       Vertex_t beta ( 0.0f );
 | |
|       
 | |
|       const size_t n = face_valence;
 | |
| 
 | |
|       assert(eval_start_index < face_valence);
 | |
| 
 | |
|       Vertex_t q( 0.0f );
 | |
|       for (size_t i=0; i<face_valence; i++)
 | |
|       {
 | |
|         size_t index = i+eval_start_index;
 | |
|         if (index >= face_valence) index -= face_valence;
 | |
|         const float a = CatmullClarkPrecomputedCoefficients::table.limittangent_a(index,n);
 | |
|         const float b = CatmullClarkPrecomputedCoefficients::table.limittangent_b(index,n);
 | |
| 	alpha +=  a * ring[2*index];
 | |
| 	beta  +=  b * ring[2*index+1];
 | |
|       }
 | |
| 
 | |
|       const float sigma = CatmullClarkPrecomputedCoefficients::table.limittangent_c(n);
 | |
|       return sigma * (alpha + beta);
 | |
|     }
 | |
|     
 | |
|     /* gets limit tangent in the direction of edge vtx -> ring[edge_valence-2] */
 | |
|     __forceinline Vertex getSecondLimitTangent() const 
 | |
|     {
 | |
|       if (unlikely(std::isinf(vertex_crease_weight)))
 | |
|         return ring[2] - vtx;
 | |
|  
 | |
|       /* border vertex rule */
 | |
|       if (unlikely(border_index != -1))
 | |
|       {
 | |
|         if (border_index != 2) {
 | |
|           return ring[2] - vtx;
 | |
|         }
 | |
|         else {
 | |
|           const unsigned int second_border_index = border_index+2 >= int(edge_valence) ? 0 : border_index+2;
 | |
|           return (ring[border_index] - ring[second_border_index]) * 0.5f;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       Vertex_t alpha( 0.0f );
 | |
|       Vertex_t beta ( 0.0f );
 | |
| 
 | |
|       const size_t n = face_valence;
 | |
| 
 | |
|       assert(eval_start_index < face_valence);
 | |
| 
 | |
|       for (size_t i=0; i<face_valence; i++)
 | |
|       {
 | |
|         size_t index = i+eval_start_index;
 | |
|         if (index >= face_valence) index -= face_valence;
 | |
| 
 | |
|         size_t prev_index = index == 0 ? face_valence-1 : index-1; // need to be bit-wise exact in cosf eval
 | |
|         const float a = CatmullClarkPrecomputedCoefficients::table.limittangent_a(prev_index,n);
 | |
|         const float b = CatmullClarkPrecomputedCoefficients::table.limittangent_b(prev_index,n);
 | |
| 	alpha += a * ring[2*index];
 | |
| 	beta  += b * ring[2*index+1];
 | |
|       }
 | |
| 
 | |
|       const float sigma = CatmullClarkPrecomputedCoefficients::table.limittangent_c(n);
 | |
|       return sigma* (alpha + beta);      
 | |
|     }
 | |
| 
 | |
|     /* gets surface normal */
 | |
|     const Vertex getNormal() const  {
 | |
|       return cross(getLimitTangent(),getSecondLimitTangent());
 | |
|     }
 | |
|     
 | |
|     /* returns center of the n-th quad in the 1-ring */
 | |
|     __forceinline Vertex getQuadCenter(const size_t index) const
 | |
|     {
 | |
|       const Vertex_t &p0 = vtx;
 | |
|       const Vertex_t &p1 = ring[2*index+0];
 | |
|       const Vertex_t &p2 = ring[2*index+1];
 | |
|       const Vertex_t &p3 = index == face_valence-1 ? ring[0] : ring[2*index+2];
 | |
|       const Vertex p = (p0+p1+p2+p3) * 0.25f;
 | |
|       return p;
 | |
|     }
 | |
|     
 | |
|     /* returns center of the n-th edge in the 1-ring */
 | |
|     __forceinline Vertex getEdgeCenter(const size_t index) const {
 | |
|       return (vtx + ring[index*2]) * 0.5f;
 | |
|     }
 | |
| 
 | |
|     bool hasValidPositions() const
 | |
|     {
 | |
|       for (size_t i=0; i<edge_valence; i++) {
 | |
|         if (!isvalid(ring[i]))
 | |
|           return false;
 | |
|       }	
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     friend __forceinline embree_ostream operator<<(embree_ostream o, const CatmullClark1RingT &c)
 | |
|     {
 | |
|       o << "vtx " << c.vtx << " size = " << c.edge_valence << ", " << 
 | |
| 	"hard_edge = " << c.border_index << ", face_valence " << c.face_valence << 
 | |
| 	", edge_level = " << c.edge_level << ", vertex_level = " << c.vertex_level << ", eval_start_index: " << c.eval_start_index << ", ring: " << embree_endl;
 | |
|       
 | |
|       for (unsigned int i=0; i<min(c.edge_valence,(unsigned int)MAX_RING_FACE_VALENCE); i++) {
 | |
|         o << i << " -> " << c.ring[i];
 | |
|         if (i % 2 == 0) o << " crease = " << c.crease_weight[i/2];
 | |
|         o << embree_endl;
 | |
|       }
 | |
|       return o;
 | |
|     } 
 | |
|   };
 | |
| 
 | |
|   typedef CatmullClark1RingT<Vec3fa,Vec3fa_t> CatmullClark1Ring3fa;
 | |
|   
 | |
|   template<typename Vertex, typename Vertex_t = Vertex>
 | |
|     struct __aligned(64) GeneralCatmullClark1RingT
 | |
|   {
 | |
|     ALIGNED_STRUCT_(64);
 | |
|     
 | |
|     typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClark1Ring;
 | |
|     
 | |
|     struct Face 
 | |
|     {
 | |
|       __forceinline Face() {}
 | |
|       __forceinline Face (int size, float crease_weight)
 | |
|         : size(size), crease_weight(crease_weight) {}
 | |
| 
 | |
|       // FIXME: add member that returns total number of vertices
 | |
| 
 | |
|       int size;              // number of vertices-2 of nth face in ring
 | |
|       float crease_weight;
 | |
|     };
 | |
| 
 | |
|     Vertex vtx;
 | |
|     DynamicStackArray<Vertex,32,MAX_RING_EDGE_VALENCE> ring; 
 | |
|     DynamicStackArray<Face,16,MAX_RING_FACE_VALENCE> faces;
 | |
|     unsigned int face_valence;
 | |
|     unsigned int edge_valence;
 | |
|     int border_face;
 | |
|     float vertex_crease_weight;
 | |
|     float vertex_level;                      //!< maximum level of adjacent edges
 | |
|     float edge_level;                        // level of first edge
 | |
|     bool only_quads;                         // true if all faces are quads
 | |
|     unsigned int eval_start_face_index;
 | |
|     unsigned int eval_start_vertex_index;
 | |
|     unsigned int eval_unique_identifier;
 | |
| 
 | |
|   public:
 | |
|     GeneralCatmullClark1RingT() 
 | |
|       : eval_start_face_index(0), eval_start_vertex_index(0), eval_unique_identifier(0) {}
 | |
| 
 | |
|     __forceinline bool isRegular() const 
 | |
|     {
 | |
|       if (border_face == -1 && face_valence == 4) return true;
 | |
|       return false;
 | |
|     }
 | |
|     
 | |
|     __forceinline bool has_last_face() const {
 | |
|       return border_face != (int)face_valence-1;
 | |
|     }
 | |
|     
 | |
|     __forceinline bool has_second_face() const {
 | |
|       return (border_face == -1) || (border_face >= 2);
 | |
|     }
 | |
| 
 | |
|     bool hasValidPositions() const
 | |
|     {
 | |
|       for (size_t i=0; i<edge_valence; i++) {
 | |
|         if (!isvalid(ring[i]))
 | |
|           return false;
 | |
|       }	
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     __forceinline void init(const HalfEdge* const h, const char* vertices, size_t stride)
 | |
|     {
 | |
|       only_quads = true;
 | |
|       border_face = -1;
 | |
|       vtx = Vertex_t::loadu(vertices+h->getStartVertexIndex()*stride);
 | |
|       vertex_crease_weight = h->vertex_crease_weight;
 | |
|       HalfEdge* p = (HalfEdge*) h;
 | |
|       
 | |
|       unsigned int e=0, f=0;
 | |
|       unsigned min_vertex_index = (unsigned)-1;
 | |
|       unsigned min_vertex_index_face = (unsigned)-1;
 | |
|       unsigned min_vertex_index_vertex = (unsigned)-1;
 | |
|       edge_level = p->edge_level;
 | |
|       vertex_level = 0.0f;
 | |
|       do 
 | |
|       {
 | |
|         HalfEdge* p_prev = p->prev();
 | |
|         HalfEdge* p_next = p->next();
 | |
|         const float crease_weight = p->edge_crease_weight;
 | |
|          assert(p->hasOpposite() || p->edge_crease_weight == float(inf));
 | |
|         vertex_level = max(vertex_level,p->edge_level);
 | |
| 
 | |
|         /* find minimum start vertex */
 | |
|         unsigned vertex_index = p_next->getStartVertexIndex();
 | |
|         if (vertex_index < min_vertex_index) { min_vertex_index = vertex_index; min_vertex_index_face = f; min_vertex_index_vertex = e; }
 | |
| 
 | |
| 	/* store first N-2 vertices of face */
 | |
| 	unsigned int vn = 0;
 | |
|         for (p = p_next; p!=p_prev; p=p->next()) {
 | |
|           ring[e++] = Vertex_t::loadu(vertices+p->getStartVertexIndex()*stride);
 | |
|           vn++;
 | |
| 	}
 | |
| 	faces[f++] = Face(vn,crease_weight);
 | |
| 	only_quads &= (vn == 2);
 | |
| 	
 | |
|         /* continue with next face */
 | |
|         if (likely(p->hasOpposite())) 
 | |
|           p = p->opposite();
 | |
|         
 | |
|         /* if there is no opposite go the long way to the other side of the border */
 | |
|         else
 | |
|         {
 | |
|           /* find minimum start vertex */
 | |
|           unsigned vertex_index = p->getStartVertexIndex();
 | |
|           if (vertex_index < min_vertex_index) { min_vertex_index = vertex_index; min_vertex_index_face = f; min_vertex_index_vertex = e; }
 | |
| 
 | |
|           /*! mark first border edge and store dummy vertex for face between the two border edges */
 | |
|           border_face = f;
 | |
| 	  faces[f++] = Face(2,inf); 
 | |
|           ring[e++] = Vertex_t::loadu(vertices+p->getStartVertexIndex()*stride);
 | |
|           ring[e++] = vtx; // dummy vertex
 | |
| 	  
 | |
|           /*! goto other side of border */
 | |
|           p = (HalfEdge*) h;
 | |
|           while (p->hasOpposite()) 
 | |
|             p = p->opposite()->next();
 | |
|         }
 | |
| 	
 | |
|       } while (p != h); 
 | |
|       
 | |
|       edge_valence = e;
 | |
|       face_valence = f;
 | |
|       eval_unique_identifier = min_vertex_index;
 | |
|       eval_start_face_index = min_vertex_index_face;
 | |
|       eval_start_vertex_index = min_vertex_index_vertex;
 | |
| 
 | |
|       assert( hasValidPositions() );
 | |
|     }
 | |
|     
 | |
|     __forceinline void subdivide(CatmullClark1Ring& dest) const
 | |
|     {
 | |
|       dest.edge_level = 0.5f*edge_level;
 | |
|       dest.vertex_level = 0.5f*vertex_level;
 | |
|       dest.face_valence = face_valence;
 | |
|       dest.edge_valence = 2*face_valence;
 | |
|       dest.border_index = border_face == -1 ? -1 : 2*border_face; // FIXME:
 | |
|       dest.vertex_crease_weight    = max(0.0f,vertex_crease_weight-1.0f);
 | |
|       dest.eval_start_index        = eval_start_face_index;
 | |
|       dest.eval_unique_identifier  = eval_unique_identifier;
 | |
|       assert(dest.face_valence <= MAX_RING_FACE_VALENCE);
 | |
| 
 | |
|       /* calculate face points */
 | |
|       Vertex_t S = Vertex_t(0.0f);
 | |
|       for (size_t face=0, v=eval_start_vertex_index; face<face_valence; face++) {
 | |
|         size_t f = (face + eval_start_face_index)%face_valence;
 | |
| 
 | |
|         Vertex_t F = vtx;
 | |
|         for (size_t k=v; k<=v+faces[f].size; k++) F += ring[k%edge_valence]; // FIXME: optimize
 | |
|         S += dest.ring[2*f+1] = F/float(faces[f].size+2);
 | |
|         v+=faces[f].size;
 | |
|         v%=edge_valence;
 | |
|       }
 | |
|       
 | |
|       /* calculate new edge points */
 | |
|       size_t num_creases = 0;
 | |
|       array_t<size_t,MAX_RING_FACE_VALENCE> crease_id;
 | |
|       Vertex_t C = Vertex_t(0.0f);
 | |
|       for (size_t face=0, j=eval_start_vertex_index; face<face_valence; face++)
 | |
|       {
 | |
|         size_t i = (face + eval_start_face_index)%face_valence;
 | |
|         
 | |
|         const Vertex_t v = vtx + ring[j];
 | |
|         Vertex_t f = dest.ring[2*i+1];
 | |
|         if (i == 0) f += dest.ring[dest.edge_valence-1]; 
 | |
|         else        f += dest.ring[2*i-1];
 | |
|         S += ring[j];
 | |
|         dest.crease_weight[i] = max(faces[i].crease_weight-1.0f,0.0f);
 | |
|         
 | |
|         /* fast path for regular edge points */
 | |
|         if (likely(faces[i].crease_weight <= 0.0f)) {
 | |
|           dest.ring[2*i] = (v+f) * 0.25f;
 | |
|         }
 | |
|         
 | |
|         /* slower path for hard edge rule */
 | |
|         else {
 | |
|           C += ring[j]; crease_id[num_creases++] = i;
 | |
|           dest.ring[2*i] = v*0.5f;
 | |
| 	  
 | |
|           /* even slower path for blended edge rule */
 | |
|           if (unlikely(faces[i].crease_weight < 1.0f)) {
 | |
|             dest.ring[2*i] = lerp((v+f)*0.25f,v*0.5f,faces[i].crease_weight);
 | |
|           }
 | |
|         }
 | |
|         j+=faces[i].size;
 | |
|         j%=edge_valence;
 | |
|       }
 | |
|       
 | |
|       /* compute new vertex using smooth rule */
 | |
|       const float inv_face_valence = 1.0f / (float)face_valence;
 | |
|       const Vertex_t v_smooth = (Vertex_t) madd(inv_face_valence,S,(float(face_valence)-2.0f)*vtx)*inv_face_valence;
 | |
|       dest.vtx = v_smooth;
 | |
|       
 | |
|       /* compute new vertex using vertex_crease_weight rule */
 | |
|       if (unlikely(vertex_crease_weight > 0.0f)) 
 | |
|       {
 | |
|         if (vertex_crease_weight >= 1.0f) {
 | |
|           dest.vtx = vtx;
 | |
|         } else {
 | |
|           dest.vtx = lerp(vtx,v_smooth,vertex_crease_weight);
 | |
|         }
 | |
|         return;
 | |
|       }
 | |
|       
 | |
|       if (likely(num_creases <= 1))
 | |
|         return;
 | |
|       
 | |
|       /* compute new vertex using crease rule */
 | |
|       if (likely(num_creases == 2)) {
 | |
|         const Vertex_t v_sharp = (Vertex_t)(C + 6.0f * vtx) * (1.0f / 8.0f);
 | |
|         const float crease_weight0 = faces[crease_id[0]].crease_weight;
 | |
|         const float crease_weight1 = faces[crease_id[1]].crease_weight;
 | |
|         dest.vtx = v_sharp;
 | |
|         dest.crease_weight[crease_id[0]] = max(0.25f*(3.0f*crease_weight0 + crease_weight1)-1.0f,0.0f);
 | |
|         dest.crease_weight[crease_id[1]] = max(0.25f*(3.0f*crease_weight1 + crease_weight0)-1.0f,0.0f);
 | |
|         const float v_blend = 0.5f*(crease_weight0+crease_weight1);
 | |
|         if (unlikely(v_blend < 1.0f)) {
 | |
|           dest.vtx = lerp(v_sharp,v_smooth,v_blend);
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       /* compute new vertex using corner rule */
 | |
|       else {
 | |
|         dest.vtx = vtx;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void convert(CatmullClark1Ring& dst) const
 | |
|     {
 | |
|       dst.edge_level = edge_level;
 | |
|       dst.vertex_level = vertex_level;
 | |
|       dst.vtx = vtx;
 | |
|       dst.face_valence = face_valence;
 | |
|       dst.edge_valence = 2*face_valence;
 | |
|       dst.border_index = border_face == -1 ? -1 : 2*border_face;
 | |
|       for (size_t i=0; i<face_valence; i++) 
 | |
| 	dst.crease_weight[i] = faces[i].crease_weight;
 | |
|       dst.vertex_crease_weight = vertex_crease_weight;
 | |
|       for (size_t i=0; i<edge_valence; i++) dst.ring[i] = ring[i];
 | |
| 
 | |
|       dst.eval_start_index = eval_start_face_index;
 | |
|       dst.eval_unique_identifier = eval_unique_identifier;
 | |
| 
 | |
|       assert( dst.hasValidPositions() );
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* gets limit tangent in the direction of edge vtx -> ring[0] */
 | |
|     __forceinline Vertex getLimitTangent() const 
 | |
|     {
 | |
|       CatmullClark1Ring cc_vtx;
 | |
|      
 | |
|       /* fast path for quad only rings */
 | |
|       if (only_quads)
 | |
|       {
 | |
|         convert(cc_vtx);
 | |
|         return cc_vtx.getLimitTangent();
 | |
|       }
 | |
|       
 | |
|       subdivide(cc_vtx);
 | |
|       return 2.0f * cc_vtx.getLimitTangent();
 | |
|     }
 | |
| 
 | |
|     /* gets limit tangent in the direction of edge vtx -> ring[edge_valence-2] */
 | |
|     __forceinline Vertex getSecondLimitTangent() const 
 | |
|     {
 | |
|       CatmullClark1Ring cc_vtx;
 | |
|      
 | |
|       /* fast path for quad only rings */
 | |
|       if (only_quads)
 | |
|       {
 | |
|         convert(cc_vtx);
 | |
|         return cc_vtx.getSecondLimitTangent();
 | |
|       }
 | |
|       
 | |
|       subdivide(cc_vtx);
 | |
|       return 2.0f * cc_vtx.getSecondLimitTangent();
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* gets limit vertex */
 | |
|     __forceinline Vertex getLimitVertex() const 
 | |
|     {
 | |
|       CatmullClark1Ring cc_vtx;
 | |
|      
 | |
|       /* fast path for quad only rings */
 | |
|       if (only_quads)
 | |
|         convert(cc_vtx);
 | |
|       else 
 | |
|         subdivide(cc_vtx);
 | |
|       return cc_vtx.getLimitVertex();
 | |
|     }
 | |
| 
 | |
|     friend __forceinline embree_ostream operator<<(embree_ostream o, const GeneralCatmullClark1RingT &c)
 | |
|     {
 | |
|       o << "vtx " << c.vtx << " size = " << c.edge_valence << ", border_face = " << c.border_face << ", " << " face_valence = " << c.face_valence << 
 | |
| 	", edge_level = " << c.edge_level << ", vertex_level = " << c.vertex_level << ", ring: " << embree_endl;
 | |
|       for (size_t v=0, f=0; f<c.face_valence; v+=c.faces[f++].size) {
 | |
|         for (size_t i=v; i<v+c.faces[f].size; i++) {
 | |
|           o << i << " -> " << c.ring[i];
 | |
|           if (i == v) o << " crease = " << c.faces[f].crease_weight;
 | |
|           o << embree_endl;
 | |
|         }
 | |
|       }
 | |
|       return o;
 | |
|     } 
 | |
|   };  
 | |
| }
 |