rendering-in-cgi/Framework/lights/point_light.cpp
2024-04-23 10:14:24 +02:00

129 lines
4.8 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "light.h"
#include <sampling.hpp>
#include <math/linearspace3.h>
#include "helper.hpp"
namespace embree {
struct PointLight {
Light super; //!< inherited light fields
Vec3fa position; //!< light position
Vec3fa power; //!< RGB color and intensity of light
float radius; //!< defines the size of the SphereLight
};
// Implementation
//////////////////////////////////////////////////////////////////////////////
Light_SampleRes PointLight_sample(const Light* super,
const Sample& dg,
const Vec2f& s) {
const PointLight* self = (PointLight *) super;
Light_SampleRes res;
// extant light vector from the hit point
const Vec3fa dir = self->position - dg.P;
const float dist2 = dot(dir, dir);
const float invdist = rsqrt(dist2);
// normalized light vector
res.dir = dir * invdist;
res.dist = dist2 * invdist;
res.pdf = inf; // per default we always take this res
// convert from power to radiance by attenuating by distance^2
res.weight = self->power * sqr(invdist);
const float sinTheta = self->radius * invdist;
if ((self->radius > 0.f) & (sinTheta > 0.005f)) {
// res surface of sphere as seen by hit point -> cone of directions
// for very small cones treat as point light, because float precision is not good enough
if (sinTheta < 1.f) {
const float cosTheta = sqrt(1.f - sinTheta * sinTheta);
const Vec3fa localDir = uniformSampleCone(cosTheta, s);
res.dir = frame(res.dir) * localDir;
res.pdf = uniformSampleConePDF(cosTheta);
const float c = localDir.z;
res.dist = c * res.dist - sqrt(sqr(self->radius) - (1.f - c * c) * dist2);
// TODO scale radiance by actual distance
} else {
// inside sphere
const Vec3fa localDir = cosineSampleHemisphere(s);
res.dir = frame(dg.Ns) * localDir;
res.pdf = cosineSampleHemispherePDF(localDir);
// TODO:
res.weight = self->power * rcp(sqr(self->radius));
res.dist = self->radius;
}
}
return res;
}
Light_EvalRes PointLight_eval(const Light* super,
const Sample& dg,
const Vec3fa& dir) {
const PointLight* self = (PointLight *) super;
Light_EvalRes res;
res.value = Vec3fa(0.f);
res.dist = inf;
res.pdf = 0.f;
if (self->radius > 0.f) {
const Vec3fa A = self->position - dg.P;
const float a = dot(dir, dir);
const float b = 2.f * dot(dir, A);
const float centerDist2 = dot(A, A);
const float c = centerDist2 - sqr(self->radius);
const float radical = sqr(b) - 4.f * a * c;
if (radical > 0.f) {
const float t_near = (b - sqrt(radical)) / (2.f * a);
const float t_far = (b + sqrt(radical)) / (2.f * a);
if (t_far > 0.0f) {
// TODO: handle interior case
res.dist = t_near;
const float sinTheta2 = sqr(self->radius) * rcp(centerDist2);
const float cosTheta = sqrt(1.f - sinTheta2);
res.pdf = uniformSampleConePDF(cosTheta);
const float invdist = rcp(t_near);
res.value = self->power * res.pdf * sqr(invdist);
}
}
}
return res;
}
// Exports (called from C++)
//////////////////////////////////////////////////////////////////////////////
//! Set the parameters of an ispc-side PointLight object
extern "C" void PointLight_set(void* super,
const Vec3fa& position,
const Vec3fa& power,
float radius) {
PointLight* self = (PointLight *) super;
self->position = position;
self->power = power;
self->radius = radius;
}
//! Create an ispc-side PointLight object
extern "C" void* PointLight_create() {
PointLight* self = (PointLight *) alignedUSMMalloc(sizeof(PointLight), 16);
Light_Constructor(&self->super);
//self->super.sample = GET_FUNCTION_POINTER(PointLight_sample);
//self->super.eval = GET_FUNCTION_POINTER(PointLight_eval);
self->super.type = LIGHT_POINT;
PointLight_set(self, Vec3fa(0.f), Vec3fa(1.f), 0.f);
return self;
}
} // namespace embree