rendering-in-cgi/Framework/external/embree/kernels/common/scene_instance_array.cpp
2024-04-23 10:14:24 +02:00

438 lines
16 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "scene_instance_array.h"
#include "scene.h"
#include "motion_derivative.h"
namespace embree
{
#if defined(EMBREE_LOWEST_ISA)
InstanceArray::InstanceArray (Device* device, unsigned int numTimeSteps)
: Geometry(device,Geometry::GTY_INSTANCE_ARRAY,1,numTimeSteps)
{
object = nullptr;
objects = nullptr;
numObjects = 0;
gsubtype = GTY_SUBTYPE_INSTANCE_LINEAR;
l2w_buf.resize(numTimeSteps);
device->memoryMonitor(sizeof(*this), false);
}
InstanceArray::~InstanceArray()
{
if (object) object->refDec();
if (objects) {
for (size_t i = 0; i < numObjects; ++i) {
if (objects[i]) objects[i]->refDec();
}
device->free(objects);
}
device->memoryMonitor(-sizeof(*this), false);
}
void InstanceArray::setNumTimeSteps (unsigned int numTimeSteps_in)
{
if (numTimeSteps_in == numTimeSteps)
return;
l2w_buf.resize(numTimeSteps_in);
Geometry::setNumTimeSteps(numTimeSteps_in);
}
void InstanceArray::setInstancedScene(const Ref<Scene>& scene)
{
if (object) object->refDec();
object = scene.ptr;
if (object) object->refInc();
Geometry::update();
}
void InstanceArray::setInstancedScenes(const RTCScene* scenes, size_t numScenes) {
if (objects) {
for (size_t i = 0; i < numObjects; ++i) {
if (objects[i]) objects[i]->refDec();
}
device->free(objects);
device->memoryMonitor(-ssize_t(numObjects*sizeof(Accel*)), true);
}
numObjects = numScenes;
device->memoryMonitor(numObjects*sizeof(Accel*), false);
objects = (Accel**) device->malloc(numScenes*sizeof(Accel*),16);
for (size_t i = 0; i < numObjects; ++i) {
Ref<Scene> scene = (Scene*) scenes[i];
objects[i] = scene.ptr;
if (objects[i]) objects[i]->refInc();
}
Geometry::update();
}
void InstanceArray::addElementsToCount (GeometryCounts & counts) const
{
if (1 == numTimeSteps) {
counts.numInstanceArrays += numPrimitives;
} else {
counts.numMBInstanceArrays += numPrimitives;
}
}
AffineSpace3fa InstanceArray::getTransform(size_t i, float time)
{
if (likely(numTimeSteps <= 1))
return getLocal2World(i);
else
return getLocal2World(i, time);
}
void InstanceArray::setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref<Buffer>& buffer, size_t offset, size_t stride, unsigned int num)
{
/* verify that all accesses are 4 bytes aligned */
if (((size_t(buffer->getPtr()) + offset) & 0x3) || (stride & 0x3))
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "data must be 4 bytes aligned");
if (type == RTC_BUFFER_TYPE_TRANSFORM)
{
if ((format != RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR)
&& (format != RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR)
&& (format != RTC_FORMAT_FLOAT3X4_ROW_MAJOR)
&& (format != RTC_FORMAT_QUATERNION_DECOMPOSITION))
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid transform buffer format");
if (slot >= l2w_buf.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid transform buffer slot");
if (format == RTC_FORMAT_QUATERNION_DECOMPOSITION)
gsubtype = GTY_SUBTYPE_INSTANCE_QUATERNION;
numPrimitives = num;
l2w_buf[slot].set(buffer, offset, stride, num, format);
l2w_buf[slot].checkPadding16();
}
else if (type == RTC_BUFFER_TYPE_INDEX)
{
if (format != RTC_FORMAT_UINT)
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid index buffer format. must be RTC_FORMAT_UINT.");
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid index buffer slot. must be 0.");
object_ids.set(buffer, offset, stride, num, format);
}
else
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "unknown buffer type");
}
void* InstanceArray::getBuffer(RTCBufferType type, unsigned int slot)
{
if (type == RTC_BUFFER_TYPE_TRANSFORM)
{
if (slot >= l2w_buf.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid transform buffer slot");
return l2w_buf[slot].getPtr();
}
else if (type == RTC_BUFFER_TYPE_INDEX)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid index buffer slot. must be 0");
return object_ids.getPtr();
}
else
{
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "unknown buffer type");
return nullptr;
}
}
void InstanceArray::updateBuffer(RTCBufferType type, unsigned int slot)
{
if (type == RTC_BUFFER_TYPE_TRANSFORM)
{
if (slot >= l2w_buf.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid transform buffer slot");
l2w_buf[slot].setModified();
}
else if (type == RTC_BUFFER_TYPE_INDEX)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid index buffer slot. must be 0");
object_ids.setModified();
}
else
{
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "unknown buffer type");
}
Geometry::update();
}
void InstanceArray::setMask (unsigned mask)
{
this->mask = mask;
Geometry::update();
}
void InstanceArray::commit()
{
if (numObjects == 0 && object == nullptr) {
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "instanced scene or scene buffer not set.");
}
if (this->numPrimitives > 0) {
if (this->numPrimitives != l2w_buf[0].size()) {
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "if scene index buffer is set, it has to have the same size as the transform buffer.");
}
}
if (!object && objects && this->numPrimitives == 1) {
object = objects[0];
if (object) object->refInc();
}
Geometry::commit();
}
// TODO InstanceArray: merge this with scene_array.cpp
namespace {
/*
This function calculates the correction for the linear bounds
bbox0/bbox1 to properly bound the motion obtained when linearly
blending the transformation and applying the resulting
transformation to the linearly blended positions
lerp(xfm0,xfm1,t)*lerp(p0,p1,t). The extrema of the error to the
linearly blended bounds have to get calculates
f = lerp(xfm0,xfm1,t)*lerp(p0,p1,t) - lerp(bounds0,bounds1,t). For
the position where this error gets extreme we have to correct the
linear bounds. The derivative of this function f can get
calculates as
f' = (lerp(A0,A1,t) lerp(p0,p1,t))` - (lerp(bounds0,bounds1,t))`
= lerp'(A0,A1,t) lerp(p0,p1,t) + lerp(A0,A1,t) lerp'(p0,p1,t) - (bounds1-bounds0)
= (A1-A0) lerp(p0,p1,t) + lerp(A0,A1,t) (p1-p0) - (bounds1-bounds0)
= (A1-A0) (p0 + t*(p1-p0)) + (A0 + t*(A1-A0)) (p1-p0) - (bounds1-bounds0)
= (A1-A0) * p0 + t*(A1-A0)*(p1-p0) + A0*(p1-p0) + t*(A1-A0)*(p1-p0) - (bounds1-bounds0)
= (A1-A0) * p0 + A0*(p1-p0) - (bounds1-bounds0) + t* ((A1-A0)*(p1-p0) + (A1-A0)*(p1-p0))
The t value where this function has an extremal point is thus:
=> t = - ((A1-A0) * p0 + A0*(p1-p0) + (bounds1-bounds0)) / (2*(A1-A0)*(p1-p0))
= (2*A0*p0 - A1*p0 - A0*p1 + (bounds1-bounds0)) / (2*(A1-A0)*(p1-p0))
*/
BBox3fa boundSegmentLinear(AffineSpace3fa const& xfm0,
AffineSpace3fa const& xfm1,
BBox3fa const& obbox0,
BBox3fa const& obbox1,
BBox3fa const& bbox0,
BBox3fa const& bbox1,
float tmin,
float tmax)
{
BBox3fa delta(Vec3fa(0.f), Vec3fa(0.f));
// loop over bounding box corners
for (int ii = 0; ii < 2; ++ii)
for (int jj = 0; jj < 2; ++jj)
for (int kk = 0; kk < 2; ++kk)
{
Vec3fa p0(ii == 0 ? obbox0.lower.x : obbox0.upper.x,
jj == 0 ? obbox0.lower.y : obbox0.upper.y,
kk == 0 ? obbox0.lower.z : obbox0.upper.z);
Vec3fa p1(ii == 0 ? obbox1.lower.x : obbox1.upper.x,
jj == 0 ? obbox1.lower.y : obbox1.upper.y,
kk == 0 ? obbox1.lower.z : obbox1.upper.z);
// get extrema of motion of bounding box corner for each dimension
const Vec3fa denom = 2.0 * xfmVector(xfm0 - xfm1, p0 - p1);
const Vec3fa nom = 2.0 * xfmPoint (xfm0, p0) - xfmPoint(xfm0, p1) - xfmPoint(xfm1, p0);
for (int dim = 0; dim < 3; ++dim)
{
if (!(std::abs(denom[dim]) > 0)) continue;
const float tl = (nom[dim] + (bbox1.lower[dim] - bbox0.lower[dim])) / denom[dim];
if (tmin <= tl && tl <= tmax) {
const BBox3fa bt = lerp(bbox0, bbox1, tl);
const Vec3fa pt = xfmPoint (lerp(xfm0, xfm1, tl), lerp(p0, p1, tl));
delta.lower[dim] = std::min(delta.lower[dim], pt[dim] - bt.lower[dim]);
}
const float tu = (nom[dim] + (bbox1.upper[dim] - bbox0.upper[dim])) / denom[dim];
if (tmin <= tu && tu <= tmax) {
const BBox3fa bt = lerp(bbox0, bbox1, tu);
const Vec3fa pt = xfmPoint(lerp(xfm0, xfm1, tu), lerp(p0, p1, tu));
delta.upper[dim] = std::max(delta.upper[dim], pt[dim] - bt.upper[dim]);
}
}
}
return delta;
}
/*
This function calculates the correction for the linear bounds
bbox0/bbox1 to properly bound the motion obtained by linearly
blending the quaternion transformations and applying the
resulting transformation to the linearly blended positions. The
extrema of the error to the linearly blended bounds has to get
calclated, the the linear bounds get corrected at the extremal
points. In difference to the previous function the extremal
points cannot get calculated analytically, thus we fall back to
some root solver.
*/
BBox3fa boundSegmentNonlinear(MotionDerivativeCoefficients const& motionDerivCoeffs,
AffineSpace3fa const& xfm0,
AffineSpace3fa const& xfm1,
BBox3fa const& obbox0,
BBox3fa const& obbox1,
BBox3fa const& bbox0,
BBox3fa const& bbox1,
float tmin,
float tmax)
{
BBox3fa delta(Vec3fa(0.f), Vec3fa(0.f));
float roots[32];
unsigned int maxNumRoots = 32;
unsigned int numRoots;
const Interval1f interval(tmin, tmax);
// loop over bounding box corners
for (int ii = 0; ii < 2; ++ii)
for (int jj = 0; jj < 2; ++jj)
for (int kk = 0; kk < 2; ++kk)
{
Vec3fa p0(ii == 0 ? obbox0.lower.x : obbox0.upper.x,
jj == 0 ? obbox0.lower.y : obbox0.upper.y,
kk == 0 ? obbox0.lower.z : obbox0.upper.z);
Vec3fa p1(ii == 0 ? obbox1.lower.x : obbox1.upper.x,
jj == 0 ? obbox1.lower.y : obbox1.upper.y,
kk == 0 ? obbox1.lower.z : obbox1.upper.z);
// get extrema of motion of bounding box corner for each dimension
for (int dim = 0; dim < 3; ++dim)
{
MotionDerivative motionDerivative(motionDerivCoeffs, dim, p0, p1);
numRoots = motionDerivative.findRoots(interval, bbox0.lower[dim] - bbox1.lower[dim], roots, maxNumRoots);
for (unsigned int r = 0; r < numRoots; ++r) {
float t = roots[r];
const BBox3fa bt = lerp(bbox0, bbox1, t);
const Vec3fa pt = xfmPoint(slerp(xfm0, xfm1, t), lerp(p0, p1, t));
delta.lower[dim] = std::min(delta.lower[dim], pt[dim] - bt.lower[dim]);
}
numRoots = motionDerivative.findRoots(interval, bbox0.upper[dim] - bbox1.upper[dim], roots, maxNumRoots);
for (unsigned int r = 0; r < numRoots; ++r) {
float t = roots[r];
const BBox3fa bt = lerp(bbox0, bbox1, t);
const Vec3fa pt = xfmPoint(slerp(xfm0, xfm1, t), lerp(p0, p1, t));
delta.upper[dim] = std::max(delta.upper[dim], pt[dim] - bt.upper[dim]);
}
}
}
return delta;
}
}
BBox3fa InstanceArray::boundSegment(size_t i, size_t itime,
BBox3fa const& obbox0, BBox3fa const& obbox1,
BBox3fa const& bbox0, BBox3fa const& bbox1,
float tmin, float tmax) const
{
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION)) {
auto const& xfm0 = l2w(i, itime);
auto const& xfm1 = l2w(i, itime+1);
MotionDerivativeCoefficients motionDerivCoeffs(xfm0, xfm1);
return boundSegmentNonlinear(motionDerivCoeffs, xfm0, xfm1, obbox0, obbox1, bbox0, bbox1, tmin, tmax);
} else {
auto const& xfm0 = getLocal2World(i, itime);
auto const& xfm1 = getLocal2World(i, itime+1);
return boundSegmentLinear(xfm0, xfm1, obbox0, obbox1, bbox0, bbox1, tmin, tmax);
}
}
LBBox3fa InstanceArray::nonlinearBounds(size_t instance,
const BBox1f& time_range_in,
const BBox1f& geom_time_range,
float geom_time_segments) const
{
LBBox3fa lbbox = empty;
/* normalize global time_range_in to local geom_time_range */
const BBox1f time_range((time_range_in.lower-geom_time_range.lower)/geom_time_range.size(),
(time_range_in.upper-geom_time_range.lower)/geom_time_range.size());
const float lower = time_range.lower*geom_time_segments;
const float upper = time_range.upper*geom_time_segments;
const float ilowerf = floor(lower);
const float iupperf = ceil(upper);
const float ilowerfc = max(0.0f,ilowerf);
const float iupperfc = min(iupperf,geom_time_segments);
const int ilowerc = (int)ilowerfc;
const int iupperc = (int)iupperfc;
assert(iupperc-ilowerc > 0);
/* this larger iteration range guarantees that we process borders of geom_time_range is (partially) inside time_range_in */
const int ilower_iter = max(-1,(int)ilowerf);
const int iupper_iter = min((int)iupperf,(int)geom_time_segments+1);
if (iupper_iter-ilower_iter == 1)
{
const float f0 = (ilowerc / geom_time_segments - time_range.lower) / time_range.size();
const float f1 = (iupperc / geom_time_segments - time_range.lower) / time_range.size();
lbbox.bounds0 = bounds(instance, ilowerc, iupperc, max(0.0f,lower-ilowerfc));
lbbox.bounds1 = bounds(instance, iupperc, ilowerc, max(0.0f,iupperfc-upper));
const BBox3fa d = boundSegment(instance, ilowerc, getObjectBounds(instance, ilowerc), getObjectBounds(instance, iupperc),
lerp(lbbox.bounds0, lbbox.bounds1, f0), lerp(lbbox.bounds0, lbbox.bounds1, f1),
max(0.f, lower-ilowerfc), 1.f - max(0.f, iupperfc-upper));
lbbox.bounds0.lower += d.lower; lbbox.bounds1.lower += d.lower;
lbbox.bounds0.upper += d.upper; lbbox.bounds1.upper += d.upper;
}
else
{
BBox3fa b0 = bounds(instance, ilowerc, ilowerc+1, lower-ilowerfc);
BBox3fa b1 = bounds(instance, iupperc, iupperc-1, iupperfc-upper);
for (int i = ilower_iter+1; i < iupper_iter; i++)
{
const float f = (float(i) / geom_time_segments - time_range.lower) / time_range.size();
const BBox3fa bt = lerp(b0, b1, f);
const BBox3fa bi = bounds(instance, i);
const Vec3fa dlower = min(bi.lower-bt.lower, Vec3fa(zero));
const Vec3fa dupper = max(bi.upper-bt.upper, Vec3fa(zero));
b0.lower += dlower; b1.lower += dlower;
b0.upper += dupper; b1.upper += dupper;
}
BBox3fa delta(Vec3fa(0.f), Vec3fa(0.f));
for (int i = max(1, ilower_iter+1); i <= min((int)fnumTimeSegments, iupper_iter); i++)
{
// compute local times for local itimes
const float f0 = ((i-1) / geom_time_segments - time_range.lower) / time_range.size();
const float f1 = ((i ) / geom_time_segments - time_range.lower) / time_range.size();
const float tmin = (i == max(1, ilower_iter+1)) ? max(0.f, lower-ilowerfc) : 0.f;
const float tmax = (i == max(1, min((int)fnumTimeSegments, iupper_iter))) ? 1.f - max(0.f, iupperfc-upper) : 1.f;
const BBox3fa d = boundSegment(instance, i-1, getObjectBounds(instance, i-1), getObjectBounds(instance, i),
lerp(b0, b1, f0), lerp(b0, b1, f1), tmin, tmax);
delta.lower = min(delta.lower, d.lower);
delta.upper = max(delta.upper, d.upper);
}
b0.lower += delta.lower; b1.lower += delta.lower;
b0.upper += delta.upper; b1.upper += delta.upper;
lbbox.bounds0 = b0;
lbbox.bounds1 = b1;
}
return lbbox;
}
#endif
namespace isa
{
InstanceArray* createInstanceArray(Device* device) {
return new InstanceArrayISA(device);
}
}
}