// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #include "motion_derivative.h" #include "../../common/sys/regression.h" #include namespace embree { struct motion_derivative_regression_test : public RegressionTest { motion_derivative_regression_test(const char* name) : RegressionTest(name) { registerRegressionTest(this); } std::mt19937_64 rng; inline float rand01() { std::uniform_real_distribution dist(0.f, 1.f); return dist(rng); } bool valid(float v) { if (std::isnan(v) && !std::isfinite(v)) { //printf("value not valid %f\n", v); return false; } return true; } inline Vec3fa random_axis() { float x = 2.f * rand01() - 1.f; float y = 2.f * rand01() - 1.f; float z = x*x+y*y > 0.995 ? 0.f : std::sqrt(1 - x*x - y*y); Vec3fa axis(x, y, z); return normalize(axis); } inline float random_scale() { float xi = 20.f * rand01() - 10.f; if (xi < 0) xi -= 0.001f; if (xi >= 0) xi += 0.001f; return xi; } inline AffineSpace3fa random_quaternion_decomposition() { Vec3fa T(20.f * rand01() - 10.f, 20.f * rand01() - 10.f, 20.f * rand01() - 10.f); Quaternion3f q = Quaternion3f::rotate(random_axis(), 4.f * M_PI * rand01() - 2.f * M_PI); AffineSpace3fa S(one); S.p = Vec3fa(20.f * rand01() - 10.f, 20.f * rand01() - 10.f, 20.f * rand01() - 10.f); S.l.vx.x = random_scale(); S.l.vy.y = random_scale(); S.l.vz.z = random_scale(); S.l.vy.x = 2.f * rand01() - 1.f; S.l.vz.x = 2.f * rand01() - 1.f; S.l.vz.y = 2.f * rand01() - 1.f; return quaternionDecomposition(T, q, S); } bool testMDC(MotionDerivativeCoefficients const& mdc) { if (!valid(mdc.theta)) return false; for (int i = 0; i < 3*8*7; ++i) { if(!valid(mdc.coeffs[i])) return false; } unsigned int maxNumRoots = 32; float roots[32]; for (int j = 0; j < 32; ++j) { Vec3fa p0(20.f * rand01() - 10.f, 20.f * rand01() - 10.f, 20.f * rand01() - 10.f); Vec3fa p1(20.f * rand01() - 10.f, 20.f * rand01() - 10.f, 20.f * rand01() - 10.f); float offset = 20.f * rand01() - 10.f; for (int dim = 0; dim < 3; ++dim) { MotionDerivative md(mdc, dim, p0, rand01() > 0.5f ? p1 : p0); float tmin = 2.f * rand01() - 1.f; float tmax = tmin + rand01(); Interval1f interval(tmin, tmax); unsigned int num_roots = md.findRoots(interval, offset, roots, maxNumRoots); if (num_roots >= maxNumRoots) { return false; } for (unsigned int i = 0; i < min(num_roots, maxNumRoots); ++i) { if(!valid(roots[i])) return false; if(!(roots[i] >= tmin && roots[i] <= tmax)) return false; } } } return true; } bool run () { bool passed = true; #if 0 std::random_device device; size_t seed = device(); #else // tests fails for this seed if MOTION_DERIVATIVE_ROOT_EPSILON is 1e-6f instead of 1e-4f size_t seed = 2973843361; #endif rng.seed(seed); //////////////////////////////////////////////////////////////////////////////// // test root solver //////////////////////////////////////////////////////////////////////////////// unsigned int maxNumRoots = 32; float roots[32]; { struct EvalFunc { Interval1f operator()(Interval1f const& t) const { return (t - 1.0) * (t + 1.0); }}; Interval1f I(-2.f, 2.f); unsigned int numRoots = 0; MotionDerivative::findRoots(EvalFunc(), I, numRoots, roots, maxNumRoots); if (numRoots != 2) return false; if (abs(roots[0]+1.f) > 1e6f) return false; if (abs(roots[1]-1.f) > 1e6f) return false; } { struct EvalFunc { Interval1f operator()(Interval1f const& t) const { return (t - 1.0f) * (t + 1.0f) * (t + 0.99999f); }}; Interval1f I(-2.f, 2.f); unsigned int numRoots = 0; MotionDerivative::findRoots(EvalFunc(), I, numRoots, roots, maxNumRoots); if (numRoots != 2) return false; } { struct EvalFunc { Interval1f operator()(Interval1f const& t) const { return (t - 1.0f) * (t + 1.0f) * (t + 0.9999f); }}; Interval1f I(-2.f, 2.f); unsigned int numRoots = 0; MotionDerivative::findRoots(EvalFunc(), I, numRoots, roots, maxNumRoots); if (numRoots != 3) return false; } { struct EvalFunc { Interval1f operator()(Interval1f const& t) const { return (-7.831048f) + (70.619041f) + (-116.007454f) * t + ((-198.235809f) + ( 411.193054f) * t + (-160.020020f) * t * t) * cos(5.438017f * t) + ((-320.571472f) + ( 786.181946f) * t + (-559.993164f) * t * t) * sin(5.438017f * t); }}; Interval1f I(0.5, 1.4f); unsigned int numRoots = 0; MotionDerivative::findRoots(EvalFunc(), I, numRoots, roots, maxNumRoots); if (numRoots != 3) return false; } { struct EvalFunc { Interval1f operator()(Interval1f const& t) const { return sin(t) * cos(t-1.0f) * 50 * (t-2.0f) * (t-4.0f); }}; Interval1f I(0.0, 7.0f); unsigned int numRoots = 0; MotionDerivative::findRoots(EvalFunc(), I, numRoots, roots, maxNumRoots); if (numRoots != 7) return false; } { struct EvalFunc { Interval1f operator()(Interval1f const& t) const { return sin(t) * cos(t-1) * 0.0000001f * (t-2.0f) * (t-4.0f); }}; Interval1f I(0.0, 7.0f); unsigned int numRoots = 0; MotionDerivative::findRoots(EvalFunc(), I, numRoots, roots, maxNumRoots); if (numRoots != 7) return false; } { // all roots are of the form n*PI/10 for n = 0, 1, 2, ... // the function values vary from 0 to 3000 // in a plot everything from 0 to 0.5 looks like constant zero struct EvalFunc { Interval1f operator()(Interval1f const& t) const { return sin(10.0f * t) * 100.0f * t*t*t*t*t; }}; Interval1f I(0.0, 2.0f); unsigned int numRoots = 0; MotionDerivative::findRoots(EvalFunc(), I, numRoots, roots, maxNumRoots); if (numRoots != 7) return false; for (int i = 0; i < 7; ++i) { if (abs(roots[i]-(i*M_PI)/10.f) > 1e-6f) return false; } } //////////////////////////////////////////////////////////////////////////////// // test motion derivative coefficients //////////////////////////////////////////////////////////////////////////////// const size_t numTests = 64; // test completely random transformations for (int j = 0; j < numTests; ++j) { AffineSpace3fa M0 = random_quaternion_decomposition(); AffineSpace3fa M1 = random_quaternion_decomposition(); if (!testMDC(MotionDerivativeCoefficients(M0, M1))) return false; if (!testMDC(MotionDerivativeCoefficients(M0, M0))) return false; } // test transformations with slightly different rotation angles for (int j = 0; j < numTests; ++j) { Vec3fa axis = random_axis(); float angle = 2.f * M_PI * (2.f * rand01() - 1.f); AffineSpace3fa S(one); Vec3fa T(0.f); for (int k = 0; k < 16; ++k) { float eps = pow(0.1f, k); Quaternion3f q0 = Quaternion3f::rotate(axis, angle); Quaternion3f q1 = Quaternion3f::rotate(axis, angle + (rand01() > 0.5f ? -1.f : 1.f) * k * eps); AffineSpace3fa M0 = quaternionDecomposition(T, q0, S); AffineSpace3fa M1 = quaternionDecomposition(T, q1, S); if (!testMDC(MotionDerivativeCoefficients(M0, M1))) return false; if (!testMDC(MotionDerivativeCoefficients(M0, M0))) return false; } } return passed; } }; motion_derivative_regression_test motion_derivative_ilter_regression("motion_derivative_regression"); }