-3%+ 1##
(&' #1$.1, -1# 9 1 1(-& #1-#+2

#12(.-m;l;j
15 19r< kikm

-3#-32

*OUOBRMCSFF OWFSWJFX
4VQQPSUFE 1MBUGPSNT
&NCSFF4VQQPSUBOE $POUBDU
7TESTIJPO)JTUPSZ

*OTUBMMBUJPO PG &NCSFF
8JOEPXT*OTUBMMBUJPO
-JOVY *OTUBMMBUJPO
NBDO4 *OTUBMMBUJPO
#VIMEJOH &NCSFF"QQMJDBUJPOT
#VIMEJOH &NCSFF 4:$-"QQMJDBUJPOT
#VIMEJOH &NCSFF5FTUT

$PNQIJMJIOH &NCSFF
-JOVY BOENBDO4
-JOVY 4:3-$PNQJMBUJPO
8JOEPXT
8JOEPXT 4:$-$PNQJIJMBUJPO
$.BLF$POGJHVSBUJPO

&NCSFF "1*
%FWJDF OCKFDU
4DFOF OCKFDU
(FPNFUSZ OCKFDU
3BZ 2VFSJFT
1PJOU 2VFSJFT
$PMMJITIPO %FUFDUJPO
'JMUFS 'VODUJPOT
#7) #VIME "1*

&NCSFF 4:%$-"1*
4:$-+*5DBDIJOH
4:$- . FNPSZ 1PPMJOH
&NCSFF 4:$--JNJUBUJPOT
&NCSFF 4:$- , OPXO *TTVFT

6QHSBEJOH GSPN &NCSFF UP &NCSFF

&NCSFF "1*3FGFSFODF
SUD/FX%FWJDF
SUD/FX4:$-%FWJDF
SUD*T4:$-%FWJDF4VQQPSUFE
SUD4:$-%FWJDF4FMFDUPS
SUD4AFU%FWJDF4:$-%FWJDF
SUD3FUBJO%FWJDF

SUD3FMFBTF%FWJDF
SUD(FU%FWJDF1SPQFSUZ
SUD(FU%FWJDF&SSPS
SUD4FU%FWJDF&SSPS'VODUJPO
SUD4FU%FWJDF.FNPSZ.POJUPS'VODUJPO
SUD/FX4DFOF

SUD(FU4DFOF%FWJDF

SUD3FUBJO4DFOF

SUD3FMFBTF4DFOF

SUD"UUBDI(FPNFUSZ
SUD"UUBDI(FPNFUSZ#Z*%
SUD%FUBDI(FPNFUSZ

SUD(FU(FPNFUSZ
SUD(FU(FPNFUSZ5ISFBE4BGF
SUD$PNNJU4DFOF

SUD+PJO$PNNJU4DFOF
SUD4FU4DFOF1SPHSFTT.POJUPS'VODUJPO
SUD4FU4DFOF#VJME2VBMJUZ
SUD4FU4DFOF'MBHT

SUD(FU4DFOF'MBHT

SUD(FU4DFOF#PVOET
SUD(FU4DFOF-JOFBS#PVOET
SUD/FX(FPNFUSZ
35$@(&0.8&53:@5:1&@53*"/(-&
35$@(&0.&53:@5:1&@26"%
35$@(&0.&53:@5:1&@ (3*%
35$@(&0.&53:@5:1&@46#%*7*4*0/
35$@(&0.8&53:@5:1&@$637&
35$@(&0.8&53:@5:1&@10*/5

35$@(&0.853: @5:1&@64&3
35$@(&0.&53:@5:1&@*/45"/$&
35$@(&0.8&53:@5:1&@*/45"/$&@"33":
35$$VSWF'MBHT

SUD3FUBJO(FPNFUSZ
SUD3FMFBTF(FPNFUSZ
SUD$PNNJU(FPNFUSZ
SUD&OBCMF(FPNFUSZ
SUD%JTBCMF(FPNFUSZ
SUD4FU(FPNFUSZ5JNF4UFQ$PVOU
SUD4FU(FPNFUSZ5JNF3BOHF
SUD4FU(FPNFUSZ7FSUFY"UUSJCVUF$PVOU
SUD4FU(FPNFUSZ.BTL
SUD4FU(FPNFUSZ#VJME2VBMJUZ
SUD4FU(FPNFUSZ.BY3BEJVT4DBMF
SUD4FU(FPNFUSZ#VGGFS
SUD4FU4IBSFE(FPNFUSZ#VGGFS
SUD4FU/FX(FPNFUSZ#VGGFS

35$'PSNBU

35$#VGGFS5ZQF
SUD(FU(FPNFUSZ#VGGFS%BUB
SUDB6QEBUF(FPNFUSZ#VGGFS
SUD4FU(FPNFUSZ*OUFSTFDU'JMUFS'VODUJPO
SUD4FU(FPNFUSZODDMVEFE'JMUFS'VODUJPO
SUD4FU(FPNFUSZ&OBCMF'JMUFS'VODUJPO'SPN"SHVNFOUT
SUD*OWPLF*OUFSTFDU'JMUFS'SPN(FPNFUSZ
SUD*OWPLFODDMVEFE'JMUFS'SPN(FPNFUSZ

SUD4FU(FPNFUSZ6TFS%BUB
SUD(FU(FPNFUSZ6TFS%BUB
SUD(FU(FPNFUSZ6TFS%BUB'SPN4DFOF
SUD4FU(FPNFUSZ6TFS1SIJNJUJWF$PVOU
SUD4FU(FPNFUSZ#PVOET'VODUJPO
SUD4FU(FPNFUSZ*OUFSTFDU'VODUJPO
SUD4FU(FPNFUSZODDMVEFE'VODUJPO
SUD4FU(FPNFUSZ1PJOU2VFSZ'VODUJPO
SUD(FU4:$-%FWJDF'VODUJPO1PJOUFS
SUD4FU(FPNFUSZ*OTUBODFE4DFOF
SUD4FU(FPNFUSZ*OTUBODFE4DFOFT
SUD4FU(FPNFUSZ5SBOTGPSN
SUD4FU(FPNFUSZ5SBOTGPSN2VBUFSOJPO
SUD(FU(FPNFUSZ5SBOTGPSN
SUD(FU(FPNFUSZ5SBOTGPSN&Y
SUD(FU(FPNFUSZ5SBOTGPSN'SPN4DFOF
SUD4FU(FPNFUSZ5FTTFMMBUJPO3BUF
SUD4FU(FPNFUSZ5PQPMPHZ$PVOU
SUD4FU(FPNFUSZ4VCEJWJTJPO.PEF
SUD4FU(FPNFUSZ7FSUFY"UUSJCVUF5PQPMPHZ
SUD4FU(FPNFUSZ%JTQMBDFNFOU'VODUJPO
SUD(FU(FPNFUSZ'JSTU)BMG&EHF
SUD(FU(FPNFUSZ'BDF
SUD(FU(FPNFUSZ/FYU)BMG&EHF
SUD(FU(FPNFUSZ1SFWJPVT)BMG&EHF
SUD(FU(FPNFUSZOQQPTJUF)BMG&EHF
SUD*OUFSQPMBUF

SUD*OUFSQPMBUF/

SUD/FX#VGGFS

SUD/FX4IBSFE#VGGFS
SUD3FUBJO#VGGFS
SUD3FMFBTF#VGGFS
SUD(FU#VGGFS%BUB

35$3BZ

35%$)JU

35$3BZ)JU

35$3BZ/

35%)JU/

35$3BZ)JU/

35$'FBUVSF'MBHT
SUD*OJU*OUFSTFDU"SHVNFOUT
SUD*OJUODDMVEFE"SHVNFOUT
SUD*OJU3BZ2VFSZ$POUFYU
SUD*OUFSTFDU

SUDODDMVEFE

SUD*OUFSTFDU

SUDODDMVEFE

SUD'PSXBSE*OUFSTFDU
SUD'PSXBSEODDMVEFE
SUD'PSXBSE*OUFSTFDU
SUD'PSXBSEODDMVEFE
SUD*OJUL1PJOU2VFSZ$POUFYU
SUD1PJOU2VFSZ

SUD$PMMJEF

SUD/FX#7)

SUD3FUBJO#7)

CONTENTS

7.119rtcReleaseBVH
7120 rtcBuildBVH
7.121 RTCQuaternionDecomposition
7.122 rtcInitQuaternionDecomposition

8 CPU Performance Recommendations
8.1 MXCSR control and status register
8.2 Thread Creation and Affinity Settings
8.3 FastCoherentRays
8.4 HugePageSupport oo
8.5 Avoid store-to-load forwarding issues with single rays

9 GPU Performance Recommendations
9.1 LowCodeComplexity.
9.2 FeatureFlags
9.3 InlinelndirectCalls
94 T7BitRayMask
9.5 Limit Motion Blur Motions
9.6 GenericPointers

10 Embree Tutorials
10.1 Minimal
10.2 Triangle Geometry
10.3 DynamiCcSCENE
10.4 Multi Scene Geometry
105 UserGeometry
106 Viewer
10.7 IntersectionFilter
10.8 Instanced Geometry Lo
10.9 Instance Array Geometry
10.10 Multi Level Instancing oo
1011 Path Tracer o
1012 Hair . . . o
10.13Curve Geometry
10.14 Subdivision Geometryo
10.15 Displacement Geometry
10.16 Grid Geometry
10.17 Point Geometry
10.18 Motion Blur Geometry
10.19 Quaternion MotionBlur oL
10.20 Interpolation
1021 ClosestPoint L
10.22V0roN0i . . . o
10.23 Collision Detection
1024BVHBuilder
1025BVH ACCESS . . . o o o
1026 Find Embree
1027 NextHit

Chapter]]

® .
Intel Embree Overview

Intel® Embree is a high-performance ray tracing library developed at Intel, which
is released as open source under the Apache 2.0 license. Intel® Embree supports
x86 CPUs under Linux, macOS, and Windows; ARM CPUs on Linux and macOS;
as well as Intel® GPUs under Linux and Windows.

Intel® Embree targets graphics application developers to improve the perfor-
mance of photo-realistic rendering applications. Embree is optimized towards
production rendering, by putting focus on incoherent ray performance, high
quality acceleration structure construction, a rich feature set, accurate primitive
intersection, and low memory consumption.

Embree’s feature set includes various primitive types such as triangles (as
well quad and grids for lower memory consumption); Catmull-Clark subdivi-
sion surfaces; various types of curve primitives, such as flat curves (for distant
views), round curves (for closeup views), and normal oriented curves, all sup-
ported with different basis functions (linear, Bézier, B-spline, Hermite, and Cat-
mull Rom); point-like primitives, such as ray oriented discs, normal oriented
discs, and spheres; user defined geometries with a procedural intersection func-
tion; multi-level instancing; filter callbacks invoked for any hit encountered; mo-
tion blur including multi-segment motion blur, deformation blur, and quaternion
motion blur; and ray masking.

Intel® Embree contains ray tracing kernels optimized for the latest x86 pro-
cessors with support for SSE, AVX, AVX2, and AVX-512 instructions, and uses
runtime code selection to choose between these kernels. Intel® Embree contains
algorithms optimized for incoherent workloads (e.g. Monte Carlo ray tracing al-
gorithms) and coherent workloads (e.g. primary visibility and hard shadow rays)
as well as supports for dynamic scenes by implementing high-performance two-
level spatial index structure construction algorithms.

Intel® Embree supports applications written with the Intel® Implicit SPMD
Program Compiler (Intel® ISPC, https://ispc.github.io/) by providing an
ISPC interface to the core ray tracing algorithms. This makes it possible to write
arenderer that automatically vectorizes and leverages SSE, AVX, AV X2, and AVX-
512 instructions.

Intel® Embree supports Intel GPUs through the SYCL open standard program-
ming language. SYCL allows to write C++ code that can be run on various de-
vices, such as CPUs and GPUs. Using Intel® Embree application developers can
write a single source renderer that executes efficiently on CPUs and GPUs. Main-
taining just one code base this way can significantly improve productivity and
eliminate inconsistencies between a CPU and GPU version of the renderer. Em-
bree supports GPUs based on the Xe HPG and Xe HPC microarchitecture, which
support hardware accelerated ray tracing do deliver excellent levels of ray trac-
ing performance.

http://www.apache.org/licenses/LICENSE-2.0
https://ispc.github.io/
https://www.khronos.org/sycl/

Intel° Embree Overview

1.1 Supported Platforms

Embree supports Windows (32-bit and 64-bit), Linux (64-bit), and macOS (64-bit).
Under Windows, Linux and macOS x86 based CPUs are supported, while ARM
CPUs are currently only supported under Linux and macOS (e.g. Apple M1).
ARM support for Windows experimental.

Embree supports Intel GPUs based on the Xe HPG microarchitecture (Intel®
Arc™ GPU) under Linux and Windows and Xe HPC microarchitecture (Intel®
Data Center GPU Flex Series and Intel® Data Center GPU Max Series) under
Linux.

The code compiles with the Intel® Compiler, Intel® oneAPI DPC++ Compiler,
GCC, Clang, and the Microsoft Compiler. To use Embree on the GPU the Intel®
oneAPI DPC++ Compiler must be used. Please see section Compiling Embree for
details on tested compiler versions.

Embree requires at least an x86 CPU with support for SSE2 or an Apple M1
CPU.

1.2 Embree Support and Contact

If you encounter bugs please report them via Embree’s GitHub Issue Tracker.
For questions and feature requests please write us at embree_support@
intel.com.
To receive notifications of updates and new features of Embree please sub-
scribe to the Embree mailing list.

1.3 Version History

1.3.1 Embree 4.3.1

« Add missing EMBREE_GEOMETRY types to embree-config.cmake

« User defined thread count now takes precedence for internal task scheduler

« Fixed static linking issue with ze_wrapper library

* Better error reporting for SYCL platform and driver problems in embree_info
and tutorial apps.

« Patch to glfw source is not applied by default anymore.

« Known issue: Running Embree on Intel® Data Center GPU Max Series
with 2 tiles (e.g. Intel® Data Center GPU Max 1550) requires setting the
environment variable ZE_FLAT _DEVICE_HIERARCHY=COMPOSITE.

» Known issue: Embree build using Apple Clang 15 and ARM support (via
the SEE2NEON library) may cause “EXEC_BAD_INSTRUCTION” runtime
exceptions. Please use Apple Clang <= 14 on macOS.

1.3.2 Embree 4.3.0

« Added instance array primitive for reducing memony requirements in
scenes with large amounts of similar instances.

* Properly checks driver if LO RTAS extension can get loaded.

» Added varying version of rtcGetGeometryTransform for ISPC.

* Fixed signature of RTCMemoryMonitorFunction for ISPC.

 Add support for ARM64 Windows platform in CMake.

1.3.3 Embree 4.2.0

« SYCL version of Embree with GPU support is no longer in beta phase.

https://github.com/embree/embree/issues
mailto:embree_support@intel.com
mailto:embree_support@intel.com
https://groups.google.com/d/forum/embree/

Intel” Embree Overview

Improved BVH build performance on many core machines for applications
that oversubscribe threads.

Added rtcGetGeometryTransformFromScene APl function that can get
used inside SYCL kernels.

No longer linkingto ze_loader in SYCL mode to avoid Intel(R) oneAPI Level
Zero dependency for CPU rendering.

« Releasing test package to test Embree.

1.3.4 Embree4.1.0

« Added support for Intel® Data Center GPU Max Series.

» Added ARM®64 Linux support.

» Added EMBREE_BACKFACE_CULLING_SPHERES cmake option. The
new cmake option defaults to OFF.

1.3.5 Embree4.0.1

« Improved performance for Tiger Lake, Comet Lake, Cannon Lake, Kaby
Lake, and Skylake client CPUs by using 256 bit SIMD instructions by de-
fault.

* Fixed broken motion blur of RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE
geometry type.

« Fixed bvh build retry issue for TBB 2020.3

« Added support for Intel® Data Center GPU Flex Series

« Fixed issue on systems without a SYCL platform.

1.3.6 Embree4.0.0

+ This Embree release adds support for Intel® Arc™ GPUs through SYCL.

» The SYCL support of Embree is in beta phase. Current functionality, qual-
ity, and GPU performance may not reflect that of the final product. Please
read the documentation section “Embree SYCL Known Issues” for known
limitations.

» Embree CPU support in this release as at Gold level, incorporating the
same quality and performance as previous releases.

« A small number of API changes were required to get optimal experience
and performance on the CPU and GPU. See documentation section “Up-
grading from Embree 3 to Embree 4” for details.

* rtcintersect and rtcOccluded function arguments changed slightly.

« RTClIntersectContext is renamed to RTCRayQuery context and most mem-
bers moved to new RTCIntersectArguments and RTCOccludedArguments
structures.

« rtcFilterintersection and rtcFilterOcclusion API calls got replaced by rtcin-
vokelntersectFilterFromGeometry and rtcinvokeOccludedFilterFromGe-
ometry API calls.

* rtcSetGeometryEnableFilterFunctionFromArguments enables argument
filter functions for some geometry.

e RTC_RAY_QUERY_FLAG_INVOKE_ARGUMENT _FILTER ray query flag
enables argument filter functions for each geometry.

« User geometry callbacks have to return if a valid hit was found.

» Ray masking is enabled by default now as required by most users.

 The default ray mask for geometries got changed from OxXFFFFFFFF to 0x1.

* Removed ray stream API as rarely used with minimal performance benefits
over packet tracing.

* Introduced rtcForwardlintersect/rtcForwardOccluded API calls to trace tail
recursive rays from user geometry callback.

Intel” Embree Overview

 The rtcGetGeometryUserDataFromScene API call got added to be used in
SYCL code.

« Added support for user geometry callback function pointer passed through
ray query context

« Feature flags enable reducing code complexity for optimal performance on
the GPU.

* Fixed compilation issues for ARM AArch64 processor under Linux.

« Setting default frequency level to SIMD256 for ARM on all platforms. This
allows using double pumped NEON execution by enabling EMBREE_ISA_NEON2X
in cmake under Linux.

 Fixed missing end caps of motion blurred line segments.

e EMBREE_ISPC_SUPPORT is turned OFF by default.

« Embree drops support of the deprecated Intel(R) Compiler. It is replaced by
the Intel(R) oneAPI DPC++/C++ Compiler on Windows and Linux and the
Intel(R) C++ Classic Compiler on MacOS (latest tested versions is 2023.0.0).

1.3.7 Embree 3.13.5

* Fixed bug in bounding flat Catmull Rom curves of subdivision level 4.
« Improved self intersection avoidance for RTC_GEOMETRY_TYPE_DISC POINT
geometry type. Intersections are skipped if the ray origin lies inside the
sphere defined by the point primitive. Self intersection avoidance can get
disabled at compile time using the EMBREE_DISC_POINT_SELF_INTERSECTION_AVOIDANCE
cmake option.
« Fixed spatial splitting for non-planar quads.

1.3.8 Embree 3.13.4

« Using 8-wide BVH and double pumped NEON instructions on Apple M1
gives 8% performance boost.

* Fixed binning related crash in SAH BVH builder.

e Added EMBREE_TBB_COMPONENT cmake option to define the compo-
nent/library name of Intel® TBB (default: tbb).

 Embree supports now Intel® oneAPI DPC++/C++ Compiler 2022.0.0

1.3.9 Embree 3.13.3

« Invalid multi segment motion blurred normal oriented curves are properly
excluded from BVH build.

* Fixing issue with normal oriented curve construction when center curve
curvature is very large. Due to this change normal oriented curve shape
changes slightly.

« Fixed crash caused by disabling a geometry and then detaching it from the
scene.

 Budfix in emulated ray packet intersection when EMBREE_RAY_PACKETS
is turned off.

« Bugfix for linear quaternion interpolation fallback.

« Fixed issues with spaces in path to Embree build folder.

 Some fixes to compile Embree in SSE mode using WebAssembly.

« Bugfix for occlusion rays with grids and ray packets.

* We do no longer provide installers for Windows and macOS, please use the
ZIP files instead.

« Upgrading to Intel® ISPC 1.17.0 for release build.

« Upgrading to Intel® oneTBB 2021.5.0 for release build.

Intel’

° Embree Overview

10

1.3.10 Embree 3.13.2

* Avoiding spatial split positions that are slightly out of geometry bounds.
« Introduced rtcGetGeometryThreadSafe function, which is a thread safe

version of rtcGetGeometry.

« Using more accurate rcp implementation.
* Budfix to rare corner case of high quality BVH builder.

1.3.11

Embree 3.13.1

Added support for Intel® ISPC ARM target.
Releases upgrade to Intel® TBB 2021.3.0 and Intel® ISPC 1.16.1

1.3.12 Embree 3.13.0

Added support for Apple M1 CPUs.
RTC_SUBDIVISION_MODE_NO_BOUNDARY now works properly for
non-manifold edges.

CMake target ‘uninstall’ is not defined if it already exists.

Embree no longer reads the .embree3 config files, thus all configuration
has to get passed through the config string to rtcNewDevice.

Releases upgrade to Intel® TBB 2021.2.0 and Intel® ISPC 1.15.0

Intel® TBB dll is automatically copied into build folder after build on win-
dows.

1.3.13 Embree 3.12.2

Fixed wrong uv and Ng for grid intersector in robust mode for AVX.
Removed optimizations for Knights Landing.
Upgrading release builds to use Intel® oneTBB 2021.1.1

1.3.14 Embree 3.12.1

Changed default frequency level to SIMD128 for Skylake, Cannon Lake,
Comet Lake and Tiger Lake CPUs. This change typically improves perfor-
mance for renderers that just use SSE by maintaining higher CPU frequen-
cies. In case your renderer is AVX optimized you can get higher ray tracing
performance by configuring the frequency level to simd256 through pass-
ing frequency_level=simd256 to rtcNewDevice.

1.3.15 Embree 3.12.0

Added linear cone curve geometry support. In this mode a real geometric
surface for curves with linear basis is rendered using capped cones. They
are discontinuous at edge boundaries.

Enabled fast two level builder for instances when low quality build is re-
quested.

Bugdfix for BVH build when geometries got disabled.

Added EMBREE_BACKFACE_CULLING_CURVES cmake option. This al-
lows for a cheaper round linear curve intersection when correct internal
tracking and back hits are not required. The new cmake option defaults to
OFF.

User geometries with invalid bounds with lower>upper in some dimension
will be ignored.

Increased robustness for grid interpolation code and fixed returned out of
range u/v coordinates for grid primitive.

Intel’

Embree Overview

Ll

Fixed handling of motion blur time range for sphere, discs, and oriented
disc geometries.

Fixed missing model data in releases.

Ensure compatibility to newer versions of Intel® oneTBB.

Motion blur BVH nodes no longer store NaN values.

1.3.16 Embree 3.11.0

Round linear curves now automatically check for the existence of left and
right connected segments if the flags buffer is empty. Left segments exist
if the segment(id-1) + 1 == segment(id) and similarly for right segments.
Implemented the min-width feature for curves and points, which allows
to increase the radius in a distance dependent way, such that the curve or
points thickness is n pixels wide.

Round linear curves are closed now also at their start.

Embree no longer supports Visual Studio 2013 starting with this release.
Budfix in subdivision tessellation level assignment for non-quad base prim-
itives

Small meshes are directly added to top level build phase of two-level
builder to reduce memory consumption.

Enabled fast two level builder for user geometries when low quality build
is requested.

1.3.17 Embree 3.10.0

Added EMBREE_COMPACT_POLYS CMake option which enables double
indexed triangle and quad leaves to reduce memory consumption in com-
pact mode by an additional 40% at about 15% performance impact. This
new mode is disabled by default.

Compile fix for Intel® oneTBB 2021.1-beta05

Releases upgrade to Intel® TBB 2020.2

Compile fix for Intel® ISPC v1.13.0

Adding RPATH to libembree.so in releases

Increased required CMake version to 3.1.0

Made instID member for array of pointers ray stream layout optional again.

1.3.18 Embree 3.9.0

Added round linear curve geometry support. In this mode a real geometric
surface for curves with linear basis is rendered using capped cones with
spherical filling between the curve segments.

Added rtcGetSceneDevice API function, that returns the device a scene got
created in.

Improved performance of round curve rendering by up to 1.8x.

Bugfix to sphere intersection filter invocation for back hit.

Fixed wrong assertion that triggered for invalid curves which anyway get
filtered out.

RelWithDeblInfo mode no longer enables assertions.

Fixed an issue in FindTBB.cmake that caused compile error with Debug
build under Linux.

Embree releases no longer provide RPMs for Linux. Please use the RPMs
coming with the package manager of your Linux distribution.

1.3.19 Embree 3.8.0

Added collision detection support for user geometries (see rtcCollide API
function)

Intel’

Embree Overview

12

Passing geomID to user geometry callbacks.

Bugfix in AVX512VL codepath for rtcintersectl

For sphere geometries the intersection filter gets now invoked for front
and back hit.

Fixed some bugs for quaternion motion blur.

RTCRayQueryContext always non-const in Embree API

Made RTCHit aligned to 16 bytes in Embree API

1.3.20 New Featuresin Embree 3.7.0

Added quaternion motion blur for correct interpolation of rotational trans-
formations.

Fixed wrong bounding calculations when a motion blurred instance did
instantiate a motion blurred scene.

In robust mode the depth test consistently uses tnear <=t <= tfar now in
order to robustly continue traversal at a previous hit point in a way that
guarantees reaching all hits, even hits at the same place.

Fixed depth test in robust mode to be precise at tnear and tfar.

Added next_hit tutorial to demonstrate robustly collecting all hits along a
ray using multiple ray queries.

Implemented robust mode for curves. This has a small performance impact
but fixes bounding problems with flat curves.

Improved quality of motion blur BVH by using linear bounds during bin-
ning.

Implemented issue with motion blur builder where number of time seg-
ments for SAH heuristic were counted wrong due to some numerical is-
sues.

Fixed an accuracy issue with rendering very short fat curves.
rtcCommitScene can now get called during rendering from multiple threads
to lazily build geometry. When Intel® TBB is used this causes a much lower
overhead than using rtcJoinCommitScene.

Geometries can now get attached to multiple scenes at the same time,
which simplifies mapping general scene graphs to API.

Updated to Intel® TBB 2019.9 for release builds.

Fixed a bug in the BVH builder for Grid geometries.

Added macOS Catalina support to Embree releases.

1.3.21 New Features in Embree 3.6.1

Restored binary compatibility between Embree 3.6 and 3.5 when single-
level instancing is used.

Fixed bug in subgrid intersector

Removed point query alignment in Intel® ISPC header

1.3.22 New Featuresin Embree 3.6

Added Catmull-Rom curve types.

Added support for multi-level instancing.

Added support for point queries.

Fixed a bug preventing normal oriented curves being used unless timesteps
were specified.

Fixed bug in external BVH builder when configured for dynamic build.
Added support for new config flag “user_threads=N”" to device initializa-
tion which sets the number of threads used by Intel® TBB but created by
the user.

Fixed automatic vertex buffer padding when using rtcSetNewGeometry
API function.

Intel° Embree Overview

13

1.3.23 New Featuresin Embree 3.5.2

e Added EMBREE_API_NAMESPACE cmake option that allows to put all

Embree API functions inside a user defined namespace.

Added EMBREE_LIBRARY_NAME cmake option that allows to rename the

Embree library.

« When Embree is compiled as static library, EMBREE_STATIC_LIB has no

longer to get defined before including the Embree API headers.

Added CPU frequency_level device configuration to allow an application

to specify the frequency level it wants to run on. This forces Embree to not

use optimizations that may reduce the CPU frequency below that level. By

default Embree is configured to the the AVX-heavy frequency level, thus if

the application uses solely non-AVX code, configuring the Embree device

with “frequency_level=simd128” may give better performance.

* Fixed a bug in the spatial split builder which caused it to fail for scenes
with more than 2724 geometries.

1.3.24 New Featuresin Embree 3.5.1

* Fixed ray/sphere intersector to work also for non-normalized rays.

« Fixed self intersection avoidance for ray oriented discs when non-normalized
rays were used.

« Increased maximal face valence for subdiv patch to 64 and reduced stack
size requirement for subdiv patch evaluation.

1.3.25 New Featuresin Embree 3.5.0

» Changed normal oriented curve definition to fix waving artefacts.
« Fixed bounding issue for normal oriented motion blurred curves.
« Fixed performance issue with motion blurred point geometry.

* Fixed generation of documentation with new pandoc versions.

1.3.26 New Featuresin Embree 3.4.0

« Added point primitives (spheres, ray-oriented discs, normal-oriented discs).
« Fixed crash triggered by scenes with only invalid primitives.

« Improved robustness of quad/grid-based intersectors.

« Upgraded to Intel® TBB 2019.2 for release builds.

1.3.27 New Featuresin Embree 3.3.0

« Added support for motion blur time range per geometry. This way geome-
tries can appear and disappear during the camera shutter and time steps
do not have to start and end at camera shutter interval boundaries.

* Fixed crash with pathtracer when using —triangle-sphere command line.

« Fixed crash with pathtracer when using —shader ao command line.

* Fixed tutorials showing a black window on macOS 10.14 until moved.

1.3.28 New Featuresin Embree 3.2.4

* Fixed compile issues with ICC 2019.
* Released ZIP files for Windows are now provided in a version linked
against Visual Studio 2013 and Visual Studio 2015.

1.3.29 New Featuresin Embree 3.2.3

« Fixed crash when using curves with RTC_SCENE_FLAG_DYNAMIC com-
bined with RTC_BUILD QUALITY_MEDIUM.

Intel’

Embree Overview

14

1.3.30 New Featuresin Embree 3.2.2

Fixed intersection distance for unnormalized rays with line segments.
Removed libmmd.dll dependency in release builds for Windows.
Fixed detection of AppleClang compiler under MacOSX.

1.3.31 New Featuresin Embree 3.2.1

Bugfix in flat mode for hermite curves.

Added EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR
cmake option to control self intersection avoidance for flat curves.
Performance fix when instantiating motion blurred scenes. The applica-
tion should best use two (or more) time steps for an instance that instanti-
ates a motion blurred scene.

Fixed AVX512 compile issue with GCC 6.1.1.

Fixed performance issue with rtcGetGeometryUserData when used during
rendering.

Budfix in length of derivatives for grid geometry.

Added BVH8 support for motion blurred curves and lines. For some work-
loads this increases performance by up to 7%.

Fixed rtcGetGeometryTransform to return the local to world transform.
Fixed bug in multi segment motion blur that caused missing of perfectly
axis aligned geometry.

Reduced memory consumption of small scenes by 4x.

Reduced temporal storage of grid builder.

1.3.32 New Featuresin Embree 3.2.0

Improved watertightness of robust mode.

Line segments, and other curves are now all contained in a single BVH
which improves performance when these are both used in a scene.
Performance improvement of up to 20% for line segments.

Bugfix to Embree2 to Embree3 conversion script.

Added support for Hermite curve basis.

Semantics of normal buffer for normal oriented curves has changed to sim-
plify usage. Please see documentation for details.

Using GLFW and imgui in tutorials.

Fixed floating point exception in static variable initialization.

Fixed invalid memory access in rtcGetGeometryTransform for non-motion
blur instances.

Improved self intersection avoidance for flat curves. Transparency rays
with tnear set to previous hit distance do not need curve radius based self
intersection avoidance as same hit is calculated again. For this reason self
intersection avoidance is now only applied to ray origin.

1.3.33 New Featuresin Embree 3.1.0

Added new normal-oriented curve primitive for ray tracing of grass-like
structures.

Added new grid primitive for ray tracing tessellated and displaced surfaces
in very memory efficient manner.

Fixed bug of ribbon curve intersector when derivative was zero.
Installing all static libraries when EMBREE_STATIC_LIB is enabled.
Added API functions to access topology of subdivision mesh.

Reduced memory consumption of instances.

Improved performance of instances by 8%.

Reduced memory consumption of curves by up to 2x.

Intel’

Embree Overview

15

Up to 5% higher performance on AVX-512 architectures.

Added native support for multiple curve basis functions. Internal basis con-
versions are no longer performed, which saves additional memory when
multiple bases are used.

Fixed issue with non thread safe local static variable initialization in VS2013.

Bugfix in rtcSetNewGeometry. Vertex buffers did not get properly overal-
located.
Replaced ImageMagick with OpenlmagelO in the tutorials.

1.3.34 New Featuresin Embree 3.0.0

Switched to a new version of the APl which provides improved flexibility
but is not backward compatible. Please see “Upgrading from Embree 2
to Embree 3” section of the documentation for upgrade instructions. In
particular, we provide a Python script that performs most of the transition
work.

User geometries inside an instanced scene and a top-level scene no longer
need to handle the instID field of the ray differently. They both just need
to copy the context.instID into the ray.instID field.

Support for context filter functions that can be assigned to a ray query.
User geometries can now invoke filter functions using the rtcFilterinter-
section and rtcFilterOcclusion calls.

Higher flexibility through specifying build quality per scene and geometry.
Geometry normal uses commonly used right-hand rule from now on.
Added self-intersection avoidance to ribbon curves and lines. Applications
do not have to implement self-intersection workarounds for these primi-
tive types anymore.

Added support for 4 billion primitives in a single scene.

Removed the RTC_MAX_USER_VERTEX_BUFFERS and RTC_MAX_INDEX_BUFFERS

limitations.

Reduced memory consumption by 192 bytes per instance.

Fixed some performance issues on AVX-512 architectures.

Individual Contributor License Agreement (ICLA) and Corporate Contrib-
utor License Agreement (CCLA) no longer required to contribute to the
project.

1.3.35 New Featuresin Embree 2.17.5

Improved watertightness of robust mode.
Fixed floating point exception in static variable initialization.
Fixed AVX512 compile issue with GCC 6.1.1.

1.3.36 New Featuresin Embree 2.17.4

Fixed AVX512 compile issue with GCC 7.

Fixed issue with not thread safe local static variable initialization in VS2013.
Fixed bug in the 4 and 8-wide packet intersection of instances with multi-
segment motion blur on AVX-512 architectures.

Fixed bug in rtcOccluded4/8/16 when only AVX-512 ISA was enabled.

1.3.37 New Featuresin Embree 2.17.3

Fixed GCC compile warning in debug mode.
Fixed bug of ribbon curve intersector when derivative was zero.
Installing all static libraries when EMBREE_STATIC_LIB is enabled.

Intel’

Embree Overview

16

1.3.38 New Featuresin Embree 2.17.2

Made BVH build of curve geometry deterministic.

1.3.39 New Featuresin Embree 2.17.1

Improved performance of occlusion ray packets by up to 50%.

Fixed detection of Clang for CMake 3 under MacOSX

Fixed AVX code compilation issue with GCC 7 compiler caused by explicit
use of vzeroupper intrinsics.

Fixed an issue where Clang address sanitizer reported an error in the in-
ternal tasking system.

Added fix to compile on 32 bit Linux distribution.

Fixed some wrong relative include paths in Embree.

Improved performance of robust single ray mode by 5%.

Added EMBREE_INSTALL_DEPENDENCIES option (default OFF) to en-
able installing of Embree dependencies.

Fixed performance regression for occlusion ray streams.

Reduced temporary memory requirements of BVH builder for curves and
line segments.

Fixed performance regression for user geometries and packet ray tracing.
Fixed bug where wrong closest hit was reported for very curvy hair seg-
ment.

1.3.40 New Featuresin Embree 2.17.0

Improved packet ray tracing performance for coherent rays by 10-60% (re-
quires RTC_INTERSECT_COHERENT flag).

Improved ray tracing performance for incoherent rays on AVX-512 archi-
tectures by 5%.

Improved ray tracing performance for streams of incoherent rays by 5-15%.
Fixed tbb_debug.lib linking error under Windows.

Fast coherent ray stream and packet code paths now also work in robust
mode.

Using less aggressive prefetching for large BVH nodes which results in
1-2% higher ray tracing performance.

Precompiled binaries have stack-protector enabled, except for traversal
kernels. BVH builders can be slightly slower due to this change. If you
want stack-protectors disabled please turn off EMBREE_STACK_PROTECTOR
in cmake and build the binaries yourself.

When enabling ISAs individually, the 8-wide BVH was previously only
available when the AVX ISA was also selected. This issue is now fixed,
and one can enable only AVX2 and still get best performance by using an
8-wide BVH.

Fixed rtcOccludedl and rtcOccluded1Ex API functions which were broken
in Intel® ISPC.

Providing MSI installer for Windows.

1.3.41 New Featuresin Embree 2.16.5

Budfix in the robust triangle intersector that rarely caused NaNs.

Fixed bug in hybrid traversal kernel when BVH leaf was entered with no
active rays. This rarely caused crashes when used with instancing.

Fixed bug introduced in Embree 2.16.2 which caused instancing not to
work properly when a smaller than the native SIMD width was used in
ray packet mode.

Intel’

Embree Overview

17

Fixed bug in the curve geometry intersector that caused rendering artefacts
for Bézier curves with p0=p1 and/or p2=p3.

Fixed bug in the curve geometry intersector that caused hit results with
NaNs to be reported.

Fixed masking bug that caused rare cracks in curve geometry.

Enabled support for SSE2 in precompiled binaries again.

1.3.42 New Featuresin Embree 2.16.4

Bugfix in the ribbon intersector for hair primitives. Non-normalized rays
caused wrong intersection distance to be reported.

1.3.43 New Featuresin Embree 2.16.3

Increased accuracy for handling subdivision surfaces. This fixes cracks
when using displacement mapping but reduces performance at irregular
vertices.

Fixed a bug where subdivision geometry was not properly updated when
modifying only the tessellation rate and vertex array.

1.3.44 New Featuresin Embree 2.16.2

Fixed bug that caused NULL ray query context in intersection filter when
instancing was used.

Fixed an issue where uv’s where outside the triangle (or quad) for very
small triangles (or quads). In robust mode we improved the uv calculation
to avoid that issue, in fast mode we accept that inconsistency for better
performance.

Changed UV encoding for non-quad subdivision patches to allow a sub-
patch UV range of [-0.5,1.5[. Using this new encoding one can use
finite differences to calculate derivatives if required. Please adjust your
code in case you rely on the old encoding.

1.3.45 New Featuresin Embree 2.16.1

Workaround for compile issues with Visual Studio 2017

Fixed bug in subdiv code for static scenes when using tessellation levels
larger than 50.

Fixed low performance when adding many geometries to a scene.

Fixed high memory consumption issue when using instances in dynamic
scene (by disabling two level builder for user geometries and instances).

1.3.46 New Featuresin Embree 2.16.0

Improved multi-segment motion blur support for scenes with different
number of time steps per mesh.

New top level BVH builder that improves build times and BVH quality of
two-level BVHs.

Added support to enable only a single ISA. Previously code was always
compiled for SSE2.

Improved single ray tracing performance for incoherent rays on AVX-512
architectures by 5-10%.

Improved packet/hybrid ray tracing performance for incoherent rays on
AVX-512 architectures by 10-30%.

Improved stream ray tracing performance for coherent rays in structure-
of-pointers layout by 40-70%.

Intel” Embree Overview

« BVH builder for compact scenes of triangles and quads needs essentially
no temporary memory anymore. This doubles the maximal scene size that
can be rendered in compact mode.

« Triangles no longer store the geometry normal in fast/default mode which
reduces memory consumption by up to 20%.

« Compact mode uses BVH4 now consistently which reduces memory con-
sumption by up to 10%.

» Reduced memory consumption for small scenes (of 10k-100k primitives)
and dynamic scenes.

* Improved performance of user geometries and instances through BVHS8
support.

« The API supports now specifying the geometry ID of a geometry at con-
struction time. This way matching the geometry 1D used by Embree and
the application is simplified.

* Fixed a bug that would have caused a failure of the BVH builder for dy-
namic scenes when run on a machine with more then 1000 threads.

« Fixed a bug that could have been triggered when reaching the maximal
number of mappings under Linux (vm.max_map_count). This could have
happened when creating a large number of small static scenes.

» Added huge page support for Windows and MacOSX (experimental).

« Added support for Visual Studio 2017.

» Removed support for Visual Studio 2012,

» Precompiled binaries now require a CPU supporting at least the SSE4.2
ISA.

» We no longer provide precompiled binaries for 32-bit on Windows.

« Under Windows one now has to use the platform toolset option in CMake
to switch to Clang or the Intel® Compiler.

« Fixed a bug for subdivision meshes when using the incoherent scene flag.

« Fixed a bug in the line geometry intersection, that caused reporting an
invalid line segment intersection with primiD -1.

« Buffer stride for vertex buffers of different time steps of triangle and quad
meshes have to be identical now.

« Fixed a bugin the curve geometry intersection code when passed a perfect
cylinder.

1.3.47 New Featuresin Embree 2.15.0

» Added rtcCommitJoin mode that allows thread to join a build operation.
When using the internal tasking system this allows Embree to solely use
the threads that called rtcCommitJoin to build the scene, while previously
also normal worker threads participated in the build. You should no longer
use rtcCommit to join a build.

» Added rtcDeviceSetErrorFunction2 API call, which sets an error call-
back function which additionally gets passed a user provided pointer
(rtcDeviceSetErrorFunction is now deprecated).

¢ Added rtcDeviceSetMemoryMonitorFunction2 API call, which sets a
memory monitor callback function which additionally get passed a user
provided pointer. (rtcDeviceSetMemoryMonitorFunction is now depre-
cated).

« Build performance for hair geometry improved by up to 2x.

« Standard BVH build performance increased by 5%.

« Added API extension to use internal Morton-code based builder, the stan-
dard binned-SAH builder, and the spatial split-based SAH builder.

« Added support for BSpline hair and curves. Embree uses either the Bézier
or BSpline basis internally, and converts other curves, which requires more
memory during rendering. For reduced memory consumption set the EM-

Intel’

Embree Overview

19

BREE_NATIVE_SPLINE_BASIS to the basis your application uses (which is
set to BEZIER by default).

Setting the number of threads through tbb: : taskscheduler_init object
on the application side is now working properly.

Windows and Linux releases are build using AVX-512 support.
Implemented hybrid traversal for hair and line segments for improved ray
packet performance.

AVX-512 code compiles with Clang 4.0.0

Fixed crash when ray packets were disabled in CMake.

1.3.48 New Featuresin Embree 2.14.0

Added ignore_config_files option to init flags that allows the applica-
tion to ignore Embree configuration files.

Face-varying interpolation is now supported for subdivision surfaces.

Up to 16 user vertex buffers are supported for vertex attribute interpola-
tion.

Deprecated rtcSetBoundaryMode function, please use the new rtcSet-
SubdivisionMode function.

Added RTC_SUBDIV_PIN_BOUNDARY mode for handling boundaries of sub-
division meshes.

Added RTC_SUBDIV_PIN_ALL mode to enforce linear interpolation for sub-
division meshes.

Optimized object generation performance for dynamic scenes.

Reduced memory consumption when using lots of small dynamic objects.
Fixed bug for subdivision surfaces using low tessellation rates.

Hair geometry now uses a new ribbon intersector that intersects with ray-
facing quads. The new intersector also returns the v-coordinate of the hair
intersection, and fixes artefacts at junction points between segments, at the
cost of a small performance hit.

Added rtcSetBuffer2 function, that additionally gets the number of el-
ements of a buffer. In dynamic scenes, this function allows to quickly
change buffer sizes, making it possible to change the number of primitives
of a mesh or the number of crease features for subdivision surfaces.
Added simple ‘viewer_anim’ tutorial for rendering key frame animations
and ‘buildbench’ for measuring BVH (re-)build performance for static and
dynamic scenes.

Added more AVX-512 optimizations for future architectures.

1.3.49 New Featuresin Embree 2.13.0

Improved performance for compact (but not robust) scenes.

Added robust mode for motion blurred triangles and quads.

Added fast dynamic mode for user geometries.

Up to 20% faster BVH build performance on the second generation Intel®
Xeon Phi™ processor codenamed Knights Landing.

Improved quality of the spatial split builder.

Improved performance for coherent streams of ray packets (SOA layout),
e.g. for fast primary visibility.

Various bug fixes in tessellation cache, quad-based spatial split builder, etc.

1.3.50 New Featuresin Embree 2.12.0

Added support for multi-segment motion blur for all primitive types.
API support for stream of pointers to single rays (rtcIntersect1Mp and
rtcOccluded1Mp)

Intel’

Embree Overview 20

Improved BVH refitting performance for dynamic scenes.

Improved high-quality mode for quads (added spatial split builder for
quads)

Faster dynamic scenes for triangle and quad-based meshes on AVX2 en-
abled machines.

Performance and correctness bugfix in optimization for streams of coher-
ent (single) rays.

Fixed large memory consumption (issue introduced in Embree v2.11.0). If
you use Embree v2.11.0 please upgrade to Embree v2.12.0.

Reduced memory consumption for dynamic scenes containing small meshes.
Added support to start and affinitize Intel® TBB worker threads by passing
“start_threads=1,set_affinity=1"to rtcNewDevice. These settings
are recommended on systems with a high thread count.
rtcInterpolate2 can now be called within a displacement shader.
Added initial support for Microsoft’s Parallel Pattern Library (PPL) as task-
ing system alternative (for optimal performance Intel® TBB is highly rec-
ommended).

Updated to Intel® TBB 2017 which is released under the Apache v2.0 li-
cense.

Dropped support for Visual Studio 2012 Win32 compiler. Visual Studio
2012 x64 is still supported.

1.3.51 New Featuresin Embree 2.11.0

Improved performance for streams of coherent (single) rays flagged with
RTC_INTERSECT_COHERENT. For such coherent ray streams, e.g. primary
rays, the performance typically improves by 1.3-2x.

New spatial split BVH builder for triangles, which is 2-6x faster than the
previous version and more memory conservative.

Improved performance and scalability of all standard BVH builders on sys-
tems with large core counts.

Fixed rtcGetBounds for motion blur scenes.

Thread affinity is now on by default when running on the latest Intel®
Xeon Phi™ processor.

Added AVX-512 support for future Intel® Xeon processors.

1.3.52 New Featuresin Embree 2.10.0

Added a new curve geometry which renders the sweep surface of a circle
along a Bézier curve.

Intersection filters can update the tfar ray distance.

Geometry types can get disabled at compile time.

Modified and extended the ray stream API.

Added new callback mechanism for the ray stream API.

Improved ray stream performance (up to 5-10%).

Up to 20% faster morton builder on machines with large core counts.

Lots of optimizations for the second generation Intel® Xeon Phi™ proces-
sor codenamed Knights Landing.

Added experimental support for compressed BVH nodes (reduces node size
to 56-62% of uncompressed size). Compression introduces a typical perfor-
mance overhead of ~10%.

Bugfix in backface culling mode. We do now properly cull the backfaces
and not the frontfaces.

Feature freeze for the first generation Intel® Xeon Phi™ coprocessor code-
named Knights Corner. We will still maintain and add bug fixes to Embree
v2.9.0, but Embree 2.10 and future versions will no longer support it.

Intel° Embree Overview

21

1.3.563 New Featuresin Embree 2.9.0

 Improved shadow ray performance (10-100% depending on the scene).
 Added initial support for ray streams (10-30% higher performance depend-

ing on ray coherence in the stream).
« Added support to calculate second order derivatives using the rtcInter-

polate2 function.

Intel’

Embree Overview

22

Fixed bug in internal task scheduler that caused deadlocks when using
rtcCommitThread.

Improved hit-distance accuracy for thin triangles in robust mode.

Added support to disable ray packet support in cmake.

1.3.58 New Featuresin Embree 2.6.2

Fixed bug triggered by instantiating motion blur geometry.

Fixed bug in hit UV coordinates of static subdivision geometries.
Performance improvements when only changing tessellation levels for sub-
division geometry per frame.

Added ray packet intersectors for subdivision geometry, resulting in im-
proved performance for coherent rays.

Reduced virtual address space usage for static geometries.

Fixed some AVX2 code paths when compiling with GCC or Clang.

Bugdfix for subdiv patches with non-matching winding order.

Bugfix in ISA detection of AVX-512.

1.3.59 New Featuresin Embree 2.6.1

Major performance improvements for ray tracing subdivision surfaces,
e.g. up to 2x faster for scenes where only the tessellation levels are chang-
ing per frame, and up to 3x faster for scenes with lots of crease features
Initial support for architectures supporting the new 16-wide AVX-512 ISA
Implemented intersection filter callback support for subdivision surfaces
Added RTC_IGNORE_INVALID_RAYS CMake option which makes the ray
intersectors more robust against full tree traversal caused by invalid ray
inputs (e.g. INF, NaN, etc)

1.3.60 New Featuresin Embree 2.6.0

Added rtcInterpolate function to interpolate per vertex attributes
Added rtcSetBoundaryMode function that can be used to select the bound-
ary handling for subdivision surfaces

Fixed a traversal bug that caused rays with very small ray direction com-
ponents to miss geometry

Performance improvements for the robust traversal mode

Fixed deadlock when calling rtcCommit from multiple threads on same
scene

1.3.61 New Featuresin Embree 2.5.1

On dual socket workstations, the initial BVH build performance almost
doubled through a better memory allocation scheme

Reduced memory usage for subdivision surface objects with crease fea-
tures

rtcCommit performance is robust against unset “flush to zero” and “denor-
mals are zero” flags. However, enabling these flags in your application is
still recommended

Reduced memory usage for subdivision surfaces with borders and in-
finitely sharp creases

Lots of internal cleanups and bug fixes for both Intel® Xeon® and Intel®
Xeon Phi™

Intel’

Embree Overview

23

1.3.62 New Featuresin Embree 2.5.0

Improved hierarchy build performance on both Intel Xeon and Intel Xeon
Phi

Vastly improved tessellation cache for ray tracing subdivision surfaces
Added rtcGetUserData API call to query per geometry user pointer set
through rtcSetUserData

Added support for memory monitor callback functions to track and limit
memory consumption

Added support for progress monitor callback functions to track build
progress and cancel long build operations

BVH builders can be used to build user defined hierarchies inside the ap-
plication (see tutorial BVH Builder)

Switched to Intel® TBB as default tasking system on Xeon to get even faster
hierarchy build times and better integration for applications that also use
Intel® TBB

rtcCommit can get called from multiple Intel® TBB threads to join the
hierarchy build operations

1.3.63 New Featuresin Embree 2.4

Support for Catmull Clark subdivision surfaces (triangle/quad base primi-
tives)

Support for vector displacements on Catmull Clark subdivision surfaces
Various bug fixes (e.g. 4-byte alignment of vertex buffers works)

1.3.64 New Featuresin Embree 2.3.3

BVH builders more robustly handle invalid input data (Intel Xeon proces-
sor family)

Motion blur support for hair geometry (Xeon)

Improved motion blur performance for triangle geometry (Xeon)
Improved robust ray tracing mode (Xeon)

Added rtcCommitThread API call for easier integration into existing task-
ing systems (Xeon and Intel Xeon Phi coprocessor)

Added support for recordingand replayingall rtcIntersect/rtcOccluded
calls (Xeon and Xeon Phi)

1.3.65 New Featuresin Embree 2.3.2

Improved mixed AABB/OBB-BVH for hair geometry (Xeon Phi)

Reduced amount of pre-allocated memory for BVH builders (Xeon Phi)
New 64-bit Morton code-based BVH builder (Xeon Phi)

(Enhanced) Morton code-based BVH builders use now tree rotations to
improve BVH quality (Xeon Phi)

Bug fixes (Xeon and Xeon Phi)

1.3.66 New Featuresin Embree 2.3.1

High quality BVH mode improves spatial splits which result in up to 30%
performance improvement for some scenes (Xeon)

Compile time enabled intersection filter functions do not reduce perfor-
mance if no intersection filter is used in the scene (Xeon and Xeon Phi)
Improved ray tracing performance for hair geometry by >20% on Xeon Phi.
BVH for hair geometry requires 20% less memory

BVHS for AVX/AVX?2 targets improves performance for single ray tracing
on Haswell by up to 12% and by up to 5% for hybrid (Xeon)

Intel° Embree Overview

24

« Memory conservative BVH for Xeon Phi now uses BVH node quantiza-
tion to lower memory footprint (requires half the memory footprint of the
default BVH)

1.3.67 New Featuresin Embree 2.3

* Support for ray tracing hair geometry (Xeon and Xeon Phi)

« Catching errors through error callback function

« Faster hybrid traversal (Xeon and Xeon Phi)

< New memory conservative BVH for Xeon Phi

* Faster Morton code-based builder on Xeon

* Faster binned-SAH builder on Xeon Phi

« Lots of code cleanups/simplifications/improvements (Xeon and Xeon Phi)

1.3.68 New Featuresin Embree 2.2

« Support for motion blur on Xeon Phi

 Support for intersection filter callback functions

Support for buffer sharing with the application

Lots of AVX2 optimizations, e.g. ~20% faster 8-wide hybrid traversal

» Experimental support for 8-wide (AVX/AVX2) and 16-wide BVHs (Xeon
Phi)

1.3.69 New Featuresin Embree 2.1

* New future proof API with a strong focus on supporting dynamic scenes
« Lots of optimizations for 8-wide AVX2 (Haswell architecture)

» Automatic runtime code selection for SSE, AVX, and AVX2

* Support for user-defined geometry

* New and improved BVH builders:

- Fast adaptive Morton code-based builder (without SAH-based top-
level rebuild)

- Both the SAH and Morton code-based builders got faster (Xeon Phi)

— New variant of the SAH-based builder using triangle pre-splits (Xeon
Phi)

1.3.70 New Featuresin Embree 2.0

« Support for the Intel® Xeon Phi™ coprocessor platform

« Support for high-performance “packet” kernels on SSE, AVX, and Xeon Phi
« Integration with the Intel® Implicit SPMD Program Compiler (Intel® ISPC)
* Instantiation and fast BVH reconstruction

 Example photo-realistic rendering engine for both C++ and Intel® ISPC

25

Chapter 2

Installation of Embree

21 Windows Installation

A pre-built version of Embree for Windows is provided as a ZIP archive embree-
4.3.1.x64.windows.zip. After unpacking this ZIP file, you should set the path to
the 1ib folder manually to your PATH environment variable for applications to
find Embree.

2.2 Linux Installation

A pre-built version of Embree for Linux is provided as a tar . gz archive: embree-
4.3.1.x86_64.linux.tar.gz. Unpack this file using tar and source the provided
embree-vars.sh (if you are using the bash shell) or embree-vars.csh (if you
are using the C shell) to set up the environment properly:

tar xzf embree-4.3.1.x86_64.1linux.tar.gz
source embree-4.3.1.x86_64.1linux/embree-vars.sh

We recommend adding a relative RPATH to your application that points to the
location where Embree (and TBB) can be found, e.g. $ORIGIN/. ./1lib.

2.3 macOS Installation

The macOS version of Embree is also delivered as a ZIP file: embree-4.3.1.x86_64.macosx.zip.
Unpack this file using tar and source the provided embree-vars. sh (if you are

using the bash shell) or embree-vars. csh (if you are using the C shell) to set up

the environment properly:

unzip embree-4.3.1.x64.macosx.zip source embree-4.3.1.x64.macosx/embree-vars.sh

If you want to ship Embree with your application, please use the Embree
library of the provided ZIP file. The library name of that Embree library is of
the form @rpath/libembree.4.dylib (and similar also for the included TBB
library). This ensures that you can add a relative RPATH to your application that
points to the location where Embree (and TBB) can be found, e.g. @loader_path/
../1ib.

https://github.com/embree/embree/releases/download/v4.3.1/embree-4.3.1.x64.windows.zip
https://github.com/embree/embree/releases/download/v4.3.1/embree-4.3.1.x64.windows.zip
https://github.com/embree/embree/releases/download/v4.3.1/embree-4.3.1.x86_64.linux.tar.gz
https://github.com/embree/embree/releases/download/v4.3.1/embree-4.3.1.x86_64.linux.tar.gz
https://github.com/embree/embree/releases/download/v4.3.1/embree-4.3.1.x86_64.macosx.zip

Installation of Embree

26

2.4 Building Embree Applications

The most convenient way to build an Embree application is through CMake. Just
let CMake find your unpacked Embree package using the FIND_PACKAGE func-
tion inside your CMakeLists.txt file:

FIND_PACKAGE(embree 4 REQUIRED)

For CMake to properly find Embree you need to set the embree_DIR variable
to the folder containing the embree_config. cmake file. You might also have to
set the TBB_DIR variable to the path containing TBB-config.cmake of a local
TBB install, in case you do not have TBB installed globally on your system, e.g:

cmake -D embree_DIR=path_to_embree_package/lib/cmake/embree-4.3.1/ \

-D TBB_DIR=path_to_tbb_package/lib/cmake/tbb/ \

The FIND_PACKAGE function will create an embree target that you can add
to your target link libraries:

TARGET_LINK_LIBRARIES(application embree)

For a full example on how to build an Embree application please have a look
at the minimal tutorial provided in the src folder of the Embree package and
also the contained README . txt file.

2.5 Building Embree SYCL Applications

Building Embree SYCL applications is also best done using CMake. Please first
get some compatible SYCL compiler and setup the environment as decribed in
sections Linux SYCL Compilation and Windows SYCL Compilation.

Also perform the setup steps from the previous Building Embree Applications
section.

Please also have a look at the Minimal tutorial that is provided with the Em-
bree release, for an example how to build a simple SYCL application using CMake
and Embree.

To properly compile your SYCL application you have to add additional SYCL
compile flags for each C++ file that contains SYCL device side code or kernels as
described next.

251 JIT Compilation

We recommend using just in time compilation (JIT compilation) together with
SYCL JIT caching to compile Embree SYCL applications. For JIT compilation add
these options to the compilation phase of all C++ files that contain SYCL code:

-fsycl -Xclang -fsycl-allow-func-ptr -fsycl-targets=spir64

These options enable SYCL two phase compilation (-fsycl option), enable
function pointer support (-Xclang -fsycl-allow-func-ptr option), and just
in time (JIT) compilation only (-fsycl-targets=spir64 option).

The following link options have to get added to the linking stage of your
application when using just in time compilation;

-fsycl -fsycl-targets=spir64

For a full example on how to build an Embree SYCL application please have
a look at the SYCL version of the minimal tutorial provided in the src folder of
the Embree package and also the contained README . txt file.

Please have a look at the Compiling Embree section on how to create an
Embree package from sources if required.

Installation of Embree

27

25.2 AOT Compilation

Ahead of time compilation (AOT compilation) allows to speed up first application
start up time as device binaries are precompiled. We do not recommend using
AOT compilation as it does not allow the usage of specialization constants to
reduce code complexity.

For ahead of time compilation add these compile options to the compilation
phase of all C++ files that contain SYCL code:

-fsycl -Xclang -fsycl-allow-func-ptr -fsycl-targets=spir64_gen

These options enable SYCL two phase compilation (-fsycl option), en-
able function pointer support (-Xclang -fsycl-allow-func-ptr option), and
ahead of time (AOT) compilation (-fsycl-targets=spir64_gen option).

The following link options have to get added to the linking stage of your
application when compiling ahead of time for Xe HPG devices:

-fsycl -fsycl-targets=spir64_gen
-Xsycl-target-backend=spir64_gen "-device XE_HPG_CORE"

This in particular configures the devices for AOT compilation to XE_HPG_
CORE.

To get a list of all device supported by AOT compilation look at the help of
the device option in ocloc tool:

ocloc compile --help

2.6 Building Embree Tests

Embree is released with a bundle of tests in an optional testing package. To
run these tests extract the testing package in the same folder as your embree
installation. e.g.:

tar -xzf embree-4.3.1-testing.zip -C /path/to/installed/embree

The tests are extracted into a new folder inside you embree installation and
can be run with:

cd /path/to/installed/embree/testing
cmake -B build
cmake --build build target=tests

28

Chapter 3
Compiling Embree

We recommend using the prebuild Embree packages from https://github.
com/embree/embree/releases. If you need to compile Embree yourself you
need to use CMake as described in the following.

Do not enable fast-math optimizations in your compiler as this mode is not
supported by Embree.

3.1 Linuxand macOS

To compile Embree you need a modern C++ compiler that supports C++11. Em-
bree is tested with the following compilers:
Linux

+ Intel® oneAPI DPC++/C++ Compiler 2024.0.2
e 0neAPI DPC++/C++ Compiler 2023-10-26

» Clang5.0.0

» Clang 4.0.0

¢ GCC 10.0.1 (Fedora 32) AVX512 support

« GCC 8.3.1 (Fedora 28) AVX512 support

e GCC 7.3.1 (Fedora 27) AVX2 support

e GCC 7.3.1 (Fedora 26) AVX2 support

* GCC 6.4.1 (Fedora 25) AVX2 support

« Intel® Implicit SPMD Program Compiler 1.22.0

macOS x86_64
« Apple Clang 15
macOS Armo64
» Apple Clang 14

Embree supports using the Intel® Threading Building Blocks (TBB) as the
tasking system. For performance and flexibility reasons we recommend using
Embree with the Intel® Threading Building Blocks (TBB) and best also use TBB
inside your application. Optionally you can disable TBB in Embree through the
EMBREE_TASKING_SYSTEM CMake variable.

Embree supports the Intel® Implicit SPMD Program Compiler (Intel® ISPC),
which allows straightforward parallelization of an entire renderer. If you want to
use Intel® ISPC then you can enable EMBREE_ISPC_SUPPORT in CMake. Down-
load and install the Intel® ISPC binaries from ispc.github.io. After installation,
put the path to ispc permanently into your PATH environment variable or you

https://github.com/embree/embree/releases
https://github.com/embree/embree/releases
https://ispc.github.io/downloads.html

Compiling Embree

29

set the EMBREE_ISPC_EXECUTABLE variable to point at the ISPC executable dur-
ing CMake configuration.

You additionally have to install CMake 3.1.0 or higher and the developer ver-
sion of GLFW version 3.

Under macOS, all these dependencies can be installed using MacPorts:

sudo port install cmake tbb-devel glfw-devel

Depending on your Linux distribution you can install these dependencies
using yum or apt-get. Some of these packages might already be installed or
might have slightly different names.

Type the following to install the dependencies using yum:

sudo yum install cmake
sudo yum install tbb-devel
sudo yum install glfw-devel

Type the following to install the dependencies using apt-get:

sudo apt-get install cmake-curses-gui
sudo apt-get install libtbb-dev
sudo apt-get install libglfw3-dev

Finally, you can compile Embree using CMake. Create a build directory inside
the Embree root directory and execute ccmake .. inside this build directory.

mkdir build
cd build
ccmake ..

Per default, CMake will use the compilers specified with the CC and CXX en-
vironment variables. Should you want to use a different compiler, run cmake
first and set the CMAKE_CXX_COMPILER and CMAKE_C_COMPILER variables to the
desired compiler. For example, to use the Clang compiler instead of the default
GCC on most Linux machines (g++ and gcc), execute

cmake -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang ..

Running ccmake will open a dialog where you can perform various config-
urations as described below in CMake Configuration. After having configured
Embree, press c (for configure) and g (for generate) to generate a Makefile and
leave the configuration. The code can be compiled by executing make.

make -j 8

The executables will be generated inside the build folder. We recommend
installing the Embree library and header files on your system. Therefore set the
CMAKE_INSTALL_PREFIX to /usr in cmake and type:

sudo make install

If you keep the default CMAKE_INSTALL_PREFIX of /usr/local then you
have to make sure the path /usr/local/lib isin your LD_LIBRARY_PATH.
You can also uninstall Embree again by executing:

sudo make uninstall
You can also create an Embree package using the following command:
make package

Please see the Building Embree Applications section on how to build your
application with such an Embree package.

https://www.glfw.org/
http://www.macports.org/

Compiling Embree

3.2 Linux SYCL Compilation

There are two options to compile Embree with SYCL support: The open source
“oneAPI DPC++ Compiler” or the “Intel(R) oneAPI DPC++/C++ Compiler”. Other
SYCL compilers are not supported.

The “oneAPI DPC++ Compiler” is more up-to-date than the “Intel(R) oneAPI
DPC++/C++ Compiler” but less stable. The current tested version of the "oneAPI
DPC++ compiler is

* oneAP| DPC++ Compiler 2023-10-26

The compiler can be downloaded and simply extracted. The oneAPI DPC++
compiler can be set up executing the following commands in a Linux (bash) shell:

export SYCL_BUNDLE_ROOT=path_to_dpcpp_compiler

export PATH=$SYCL_BUNDLE_ROOT/bin:$PATH

export CPATH=$SYCL_BUNDLE_ROOT/include:$CPATH

export LIBRARY_PATH=$SYCL_BUNDLE_ROOT/1ib:$LIBRARY_PATH
export LD_LIBRARY_PATH=$SYCL_BUNDLE_ROOT/1lib:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH=$SYCL_BUNDLE_ROOT/linux/1ib/x64:$LD_LIBRARY_PATH

where the path_to_dpcpp_compiler should point to the unpacked oneAPI
DPC++ compiler. This will put clang++ and clang from the oneAPI DPC++
Compiler into your path.

Please also install all Linux packages described in the previous section.

Now, you can configure Embree using CMake by executing the following
command in the Embree root directory:

cmake -B build \
-DCMAKE_CXX_COMPILER=clang++ \
-DCMAKE_C_COMPILER=clang \
-DEMBREE_SYCL_SUPPORT=0ON

This will create a directory build to use as the CMake build directory, config-
ure the usage of the oneAPI DPC++ Compiler, and turn on SYCL support through
EMBREE_SYCL_SUPPORT=0N.

Alternatively, you can download and run the installer of the

* Intel(R) oneAPI DPC++/C++ Compiler.

After installation, you can set up the compiler by sourcing the vars. sh script
in the env directory of the compiler install directory, for example,

source /opt/intel/oneAPI/compiler/latest/env/vars.sh

This script will put the icpx and icx compiler executables from the Intel(R)
oneAPI DPC++/C++ Compiler in your path.

Now, you can configure Embree using CMake by executing the following
command in the Embree root directory:

cmake -B build \
-DCMAKE_CXX_COMPILER=icpx \
-DCMAKE_C_COMPILER=icx \
-DEMBREE_SYCL_SUPPORT=0ON

More information about setting up the Intel(R) oneAPI DPC++/C++ compiler
can be found in the Development Reference Guide. Please note, that the Intel(R)
oneAPI DPC++/C++ compiler requires at least CMake version 3.20.5 on Linux.

Independent of the DPC++ compiler choice, you can now build Embree using

cmake --build build -j 8

https://github.com/intel/llvm/
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#dpcpp-cpp
https://github.com/intel/llvm/releases/tag/nightly-2023-10-26
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#dpcpp-cpp
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/compiler-setup.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/compiler-setup/use-the-command-line/use-cmake-with-the-compiler.html

Compiling Embree

31

3.2.1 Linux Graphics Driver Installation

To run the SYCL code you need to install the latest GPGPU drivers for your Intel
Xe HPG/HPC GPUs from here https://dgpu-docs.intel.com/. Follow the
driver installation instructions for your graphics card and operating system.

3.3 Windows

Embree is tested using the following compilers under Windows:

Intel® oneAPI DPC++/C++ Compiler 2024.0.2
oneAP|l DPC++/C++ Compiler 2023-10-26
Visual Studio 2022

Visual Studio 2019

Visual Studio 2017

+ Intel® Implicit SPMD Program Compiler 1.22.0

To compile Embree for AVX-512 you have to use the Intel® Compiler.

Embree supports using the Intel® Threading Building Blocks (TBB) as the
tasking system. For performance and flexibility reasons we recommend using
use Embree with the Intel® Threading Building Blocks (TBB) and best also use
TBB inside your application. Optionally you can disable TBB in Embree through
the EMBREE_TASKING_SYSTEM CMake variable.

Embree will either find the Intel® Threading Building Blocks (TBB) instal-
lation that comes with the Intel® Compiler, or you can install the binary dis-
tribution of TBB directly from https://github.com/oneapi-src/oneTBB/
releases into a folder named tbb into your Embree root directory. You also
have to make sure that the libraries tbb.d11 and tbb_malloc.dl1 can be found
when executing your Embree applications, e.g. by putting the path to these li-
braries into your PATH environment variable.

Embree supports the Intel® Implicit SPMD Program Compiler (Intel® ISPC),
which allows straightforward parallelization of an entire renderer. When in-
stalling Intel® ISPC, make sure to download an Intel® ISPC version from ispc.github.io
that is compatible with your Visual Studio version. After installation, put the
path to ispc.exe permanently into your PATH environment variable or you
need to correctly set the EMBREE_ISPC_EXECUTABLE variable during CMake con-
figuration to point to the ISPC executable. If you want to use Intel® ISPC, you
have to enable EMBREE_ISPC_SUPPORT in CMake.

You additionally have to install CMake (version 3.1 or higher). Note that
you need a native Windows CMake installation because CMake under Cygwin
cannot generate solution files for Visual Studio.

3.3.1 Usingthe IDE

Run cmake-gui, browse to the Embree sources, set the build directory and click
Configure. Now you can select the Generator, e.g. “Visual Studio 12 2013” for a
32-bit build or “Visual Studio 12 2013 Win64” for a 64-bit build.

To use a different compiler than the Microsoft Visual C++ compiler, you addi-
tionally need to specify the proper compiler toolset through the option “Optional
toolset to use (-T parameter)”. E.g. to use Clang for compilation set the toolset
to “LLVM_v142",

Do not change the toolset manually in a solution file (neither through the
project properties dialog nor through the “Use Intel Compiler” project context
menu), because then some compiler-specific command line options cannot be
set by CMake.

https://dgpu-docs.intel.com/
https://github.com/oneapi-src/oneTBB/releases
https://github.com/oneapi-src/oneTBB/releases
https://ispc.github.io/downloads.html
http://www.cmake.org/download/

Compiling Embree

32

Most configuration parameters described in the CMake Configuration can be
set under Windows as well. Finally, click “Generate” to create the Visual Studio
solution files.

The following CMake options are only available under Windows:

e CMAKE_CONFIGURATION_TYPE: List of generated configurations. The de-
fault value is Debug;Release;RelWithDeblnfo.

e USE_STATIC_RUNTIME: Use the static version of the C/C++ runtime library.
This option is turned OFF by default.

Use the generated Visual Studio solution file embree4.sln to compile the
project.

We recommend enabling syntax highlighting for the . ispc source and . isph
header files. To do so open Visual Studio, go to Tools = Options = Text Editor
= File Extension and add the isph and ispc extensions for the “Microsoft Visual
C++” editor.

3.3.2 Usingthe CommandLine

Embree can also be configured and built without the IDE using the Visual Studio
command prompt:

cd path\to\embree
mkdir build

cd build
cmake -G "Visual Studio 16 2019" ..
cmake --build . --config Release

You can also build only some projects with the - -target switch. Additional
parameters after “--" will be passed to msbuild. For example, to build the Em-
bree library in parallel use

cmake --build . --config Release --target embree -- /m

3.3.3 Building Embree - Using vcpkg

You can download and install Embree using the vcpkg dependency manager:

git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg

./bootstrap-vcpkg.sh

./vcpkg integrate install

./vcpkg install embree3

The Embree port in vcpkg is kept up to date by Microsoft team members and
community contributors. If the version is out of date, please create an issue or
pull request on the vcpkg repository.

3.4 Windows SYCL Compilation

There are two options to compile Embree with SYCL support: The open source
“oneAPI DPC++ Compiler” or the “Intel(R) oneAPI DPC++/C++ Compiler”. Other
SYCL compilers are not supported. You will also need an installed version of Vi-
sual Studio that supports the C++17 standard, e.g. Visual Studio 2019.

The “oneAPI DPC++ Compiler” is more up-to-date than the “Intel(R) oneAPI
DPC++/C++ Compiler” but less stable. The current tested version of the oneAPI
DPC++ compiler is

https://github.com/Microsoft/vcpkg
https://github.com/Microsoft/vcpkg
https://github.com/Microsoft/vcpkg
https://github.com/intel/llvm/
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#dpcpp-cpp

Compiling Embree

33

» oneAPI DPC++ Compiler 2023-10-26

Download and unpack the archive and open the “x64 Native Tools Command
Prompt” of Visual Studio and execute the following lines to properly configure
the environment to use the oneAPI DPC++ compiler:

set "DPCPP_DIR=path_to_dpcpp_compiler"

set "PATH=%DPCPP_DIR%\bin;%PATH%"

set "PATH=%DPCPP_DIR%\1lib;%PATH%"

set "CPATH=%DPCPP_DIR%\include;%CPATH%"

set "INCLUDE=%DPCPP_DIR%\include;%INCLUDE%"
set "LIB=%DPCPP_DIR%\1lib;%LIB%"

The path_to_dpcpp_compiler should point to the unpacked oneAPI DPC++
compiler.

Now, you can configure Embree using CMake by executing the following
command in the Embree root directory:

cmake -B build
-G Ninja
-D CMAKE_BUILD_TYPE=Release
-D CMAKE_CXX_COMPILER=clang++
-D CMAKE_C_COMPILER=clang
-D EMBREE_SYCL_SUPPORT=0N
-D TBB_ROOT=path_to_tbb\1lib\cmake\tbb

This will create a directory build to use as the CMake build directory, and
configure a release build that uses clang++ and clang from the oneAPI DPC++
compiler.

The Ninja generator is currently the easiest way to use the oneAPI DPC++
compiler.

We also enable SYCL support in Embree using the EMBREE_SYCL_SUPPORT
CMake option.

Alternatively, you can download and run the installer of the

* Intel(R) oneAPI DPC++/C++ Compiler.

After installation, you can either open a regular Command Prompt and exe-
cute the vars.bat script in the env directory of the compiler install directory,
for example

C:\Program Files (x86)\Intel\oneAPI\compiler\latest\env\vars.bat

or simply open the installed “Intel oneAPI command prompt for Intel 64 for
Visual Studio”.

Both ways will put the icx compiler executable from the Intel(R) oneAPI
DPC++/C++ compiler in your path.

Now, you can configure Embree using CMake by executing the following
command in the Embree root directory:

cmake -B build
-G Ninja
-D CMAKE_BUILD_TYPE=Release
-D CMAKE_CXX_COMPILER=icx
-D CMAKE_C_COMPILER=icx
-D EMBREE_SYCL_SUPPORT=0N
-D TBB_ROOT=path_to_tbb\1lib\cmake\tbb

https://github.com/intel/llvm/releases/tag/nightly-2023-10-26
https://ninja-build.org/
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#dpcpp-cpp

Compiling Embree

34

More information about setting up the Intel(R) oneAPI DPC++/C++ compiler
can be found in the Development Reference Guide. Please note, that the Intel(R)
oneAP| DPC++/C++ compiler requires at least CMake version 3.23 on Windows.

Independent of the DPC++ compiler choice, you can now build Embree using

cmake --build build

If you have problems with Ninja re-running CMake in an infinite loop, then
first remove the “Re-run CMake if any of its inputs changed.” section from the
build.ninja file and run the above command again.

You can also create an Embree package using the following command:

cmake --build build --target package

Please see the Building Embree SYCL Applications section on how to build
your application with such an Embree package.

3.4.1 Windows Graphics Driver Installation

In order to run the SYCL tutorials on HPG hardware, you first need to install the
graphics drivers for your graphics card from https://www.intel.com. Please
make sure to have installed version 31.0.101.4644 or newer.

3.5 CMake Configuration

The default CMake configuration in the configuration dialog should be appro-
priate for most usages. The following list describes all parameters that can be
configured in CMake:

e CMAKE_BUILD_TYPE: Can be used to switch between Debug mode (Debug),
Release mode (Release) (default), and Release mode with enabled assertions
and debug symbols (RelWithDebInfo).

e EMBREE_STACK_PROTECTOR: Enables protection of return address from
buffer overwrites. This option is OFF by default.

+ EMBREE_ISPC_SUPPORT: Enables Intel® ISPC support of Embree. This op-
tion is OFF by default.

e EMBREE_SYCL_SUPPORT: Enables GPU support using SYCL. When this op-
tion is enabled you have to use some DPC++ compiler. Please see the
sections Linux SYCL Compilation and Windows SYCL Compilation on sup-
ported DPC++ compilers. This option is OFF by default.

e EMBREE_SYCL_AOT_DEVICES: Selects a list of GPU devices for ahead-of-
time (AOT) compilation of device code. Possible values are either, “none”
which enables only just in time (JIT) compilation, or a list of the Embree-
supported Xe GPUs for AOT compilation:

— XE_HPG_CORE : Xe HPG devices
- XE_HPC_CORE : Xe HPC devices

One can also specify multiple devices separated by comma to compile
ahead of time for multiple devices, e.g. “XE_HPG_CORE,XE_HP_CORE”",
When enabling AOT compilation for one or multiple devices, JIT compila-
tion will always additionally be enabled in case the code is executed on a
device no code is precompiled for.

Execute “ocloc compile —help” for more details of possible devices to pass.
Embree is only supported on Xe HPG/HPC and newer devices.

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/compiler-setup.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/compiler-setup/use-the-command-line/use-cmake-with-the-compiler.html
https://www.intel.com

Compiling Embree

35

Per default, this option is set to “none” to enable JIT compilation. We rec-
ommend using JIT compilation as this enables the use of specialization
constants to reduce code complexity.

EMBREE_STATIC_LIB: Builds Embree as a static library (OFF by default).
Further multiple static libraries are generated for the different ISAs se-
lected (e.g. embree4.a, embree4_sse42.a, embree4_avx.a, embreed_
avx2.a, embree4_avx512.a). You have to link these libraries in exactly
this order of increasing ISA.

EMBREE_API_NAMESPACE: Specifies a namespace name to put all Embree
API symbols inside. By default, no namespace is used and plain C symbols
are exported.

EMBREE_LIBRARY_NAME: Specifies the name of the Embree library file cre-
ated. By default, the name embree4 is used.

EMBREE_IGNORE_CMAKE_CXX_FLAGS: When enabled, Embree ignores de-
fault CMAKE_CXX_FLAGS. This option is turned ON by default.

EMBREE_TUTORIALS: Enables build of Embree tutorials (default ON).

EMBREE_BACKFACE_CULLING: Enables backface culling, i.e. only surfaces
facing a ray can be hit. This option is turned OFF by default.

EMBREE_BACKFACE_CULLING_CURVES: Enables backface culling for curves,
i.e. only surfaces facing a ray can be hit. This option is turned OFF by
default.

EMBREE_BACKFACE_CULLING_SPHERES: Enables backface culling for spheres,
i.e. only surfaces facing a ray can be hit. This option is turned OFF by de-
fault.

EMBREE_COMPACT_POLYS: Enables compact tris/quads, i.e. only geomIDs
and primIDs are stored inside the leaf nodes.

EMBREE_FILTER_FUNCTION: Enables the intersection filter function fea-
ture (ON by default).

EMBREE_RAY_MASK: Enables the ray masking feature (OFF by default).

EMBREE_RAY_PACKETS: Enables ray packet traversal kernels. This feature
is turned ON by default. When turned on packet traversal is used internally
and packets passed to rtcintersect4/8/16 are kept intact in callbacks (when
the ISA of appropriate width is enabled).

EMBREE_IGNORE_INVALID_RAYS: Makes code robust against the risk of
full-tree traversals caused by invalid rays (e.g. rays containing INF/NaN
as origins). This option is turned OFF by default.

EMBREE_TASKING_SYSTEM: Chooses between Intel® Threading TBB Build-
ing Blocks (TBB), Parallel Patterns Library (PPL) (Windows only), or an
internal tasking system (INTERNAL). By default, TBB is used.

EMBREE_TBB_ROOT: If Intel® Threading Building Blocks (TBB) is used as a
tasking system, search the library in this directory tree.

EMBREE_TBB_COMPONENT: The component/library name of Intel® Thread-
ing Building Blocks (TBB). Embree searches for this library name (default:
tbb) when TBB is used as the tasking system.

EMBREE_TBB_POSTFIX: If Intel® Threading Building Blocks (TBB) is used
as a tasking system, link to thb.(so,dll,lib). Defaults to the empty string.

Compiling Embree 36

EMBREE_TBB_DEBUG_ROOT: If Intel® Threading Building Blocks (TBB) is
used as a tasking system, search the library in this directory tree in De-
bug mode. Defaults to EMBREE_TBB_ROOT.

EMBREE_TBB_DEBUG_POSTFIX: If Intel® Threading Building Blocks (TBB)
is used as a tasking system, link to tbb.(so,dll,lib) in Debug mode. Defaults
to”_debug”.

EMBREE_MAX_ISA: Select highest supported ISA (SSE2, SSE4.2, AVX, AVX2,
AVX512, or NONE). When set to NONE the EMBREE_ISA * variables can
be used to enable ISAs individually. By default, the option is set to AVX2.

EMBREE_ISA_SSE2; Enables SSE2 when EMBREE_MAX_ISA issetto NONE.
By default, this option is turned OFF.

EMBREE_ISA_SSE42: Enables SSE4.2 when EMBREE_MAX_ISA is set to
NONE. By default, this option is turned OFF.

EMBREE_ISA_AVX: Enables AVX when EMBREE_MAX ISA is set to NONE.
By default, this option is turned OFF.

EMBREE_ISA_AVX2: Enables AVX2 when EMBREE_MAX ISA is set to
NONE. By default, this option is turned OFF.

EMBREE_ISA_AVX512: Enables AVX-512 for Skylake when EMBREE_MAX_ISA
is set to NONE. By default, this option is turned OFF.

EMBREE_GEOMETRY_TRIANGLE: Enables support for triangle geometries
(ON by default).

EMBREE_GEOMETRY_QUAD: Enables support for quad geometries (ON by de-
fault).

EMBREE_GEOMETRY_CURVE: Enables support for curve geometries (ON by
default).

EMBREE_GEOMETRY_SUBDIVISION: Enables support for subdivision geome-
tries (ON by default).

EMBREE_GEOMETRY_INSTANCE: Enables support for instances (ON by de-
fault).

EMBREE_GEOMETRY_INSTANCE_ARRAY: Enables support for instance arrays
(ON by default).

EMBREE_GEOMETRY_USER: Enables support for user-defined geometries
(ON by default).

EMBREE_GEOMETRY_POINT: Enables support for point geometries (ON by
default).

EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR: Specifies a fac-
tor that controls the self-intersection avoidance feature for flat curves. Flat
curve intersections which are closer than curve_radius*EMBREE_CURVE_
SELF_INTERSECTION_AVOIDANCE_FACTOR to the ray origin are ignored.
A value of 0.0f disables self-intersection avoidance while 2.0f is the default
value.

EMBREE_DISC_POINT_SELF_INTERSECTION_AVOIDANCE: Enables self-intersection
avoidance for RTC_GEOMETRY_TYPE_DISC_POINT geometry type (ON

by default). When enabled intersections are skipped if the ray origin lies

inside the sphere defined by the point primitive.

Compiling Embree

37

* EMBREE_MIN_WIDTH: Enabled the min-width feature, which allows increas-
ing the radius of curves and points to match some amount of pixels. See
rtcSetGeometryMaxRadiusScale for more details.

* EMBREE_MAX_INSTANCE_LEVEL_COUNT: Specifies the maximum number of
nested instance levels. Should be greater than 0; the default value is 1. In-
stances nested any deeper than this value will silently disappear in release
mode, and cause assertions in debug mode.

38

Chapter4
Embree API

The Embree API is a low-level C99 ray tracing APl which can be used to build
spatial index structures for 3D scenes and perform ray queries of different types.

The API can get used on the CPU using standard C, C++, and ISPC code and
Intel GPUs by using SYCL code.

The Intel® Implicit SPMD Program Compiler (Intel® ISPC) version of the API,
is almost identical to the standard C99 version, but contains additional functions
that operate on ray packets with a size of the native SIMD width used by Intel®
ISPC.

The SYCL version of the APl is also mostly identical to the C99 version of the
API, with some exceptions listed in section Embree SYCL API.

For simplicity this document refers to the C99 version of the API functions.
For changes when upgrading from the Embree 3 to the current Embree 4 API see
Section Upgrading from Embree 3 to Embree 4.

All API calls carry the prefix rtc (or RTC for types) which stands for ray
tracing core. The API supports scenes consisting of different geometry types
such as triangle meshes, quad meshes (triangle pairs), grid meshes, flat curves,
round curves, oriented curves, subdivision meshes, instances, and user-defined
geometries. See Section Scene Object for more information.

Finding the closest hit of a ray segment with the scene (rtcIntersect-type
functions), and determining whether any hit between a ray segment and the
scene exists (rtcOccluded-type functions) are both supported. The API sup-
ports queries for single rays and ray packets. See Section Ray Queries for more
information.

The API is designed in an object-oriented manner, e.g. it contains device ob-
jects (RTCDevice type), scene objects (RTCScene type), geometry objects (RTC-
Geometry type), buffer objects (RTCBuffer type), and BVH objects (RTCBVH type).
All objects are reference counted, and handles can be released by calling the ap-
propriate release function (e.g. rtcReleaseDevice) or retained by incrementing
the reference count (e.g. rtcRetainDevice). In general, API calls that access the
same object are not thread-safe, unless specified otherwise. However, attaching
geometries to the same scene and performing ray queries in a scene is thread-
safe.

41 Device Object

Embree supports a device concept, which allows different components of the
application to use the Embree API without interfering with each other. An ap-
plication typically first creates a device using the rtcNewDevice function (or rtc-
NewSYCLDevice when using SYCL for the GPU). This device can then be used to
construct further objects, such as scenes and geometries. Before the application
exits, it should release all devices by invoking rtcReleaseDevice. An application

Embree API

39

typically creates only a single device. If required differently, it should only use a
small number of devices at any given time.

Each user thread has its own error flag per device. If an error occurs when
invoking an API function, this flag is set to an error code (if it isn’t already set
by a previous error). See Section rtcGetDeviceError for information on how to
read the error code and Section rtcSetDeviceErrorFunction on how to register a
callback that is invoked for each error encountered. It is recommended to always
set a error callback function, to detect all errors.

4.2 Scene Object

A scene is a container for a set of geometries, and contains a spatial acceleration
structure which can be used to perform different types of ray queries.

A scene is created using the rtcNewScene function call, and released using
the rtcReleaseScene function call. To populate a scene with geometries use
the rtcAttachGeometry call, and to detach them use the rtcDetachGeome-
try call. Once all scene geometries are attached, an rtcCommitScene call (or
rtcJoinCommitScene call) will finish the scene description and trigger building
of internal data structures. After the scene got committed, it is safe to perform
ray queries (see Section Ray Queries) or to query the scene bounding box (see
rtcGetSceneBounds and rtcGetSceneLinearBounds).

If scene geometries get modified or attached or detached, the rtcCommitScene
call must be invoked before performing any further ray queries for the scene; oth-
erwise the effect of the ray query is undefined. The modification of a geometry,
committing the scene, and tracing of rays must always happen sequentially, and
never at the same time. Any API call that sets a property of the scene or geome-
tries contained in the scene count as scene modification, e.g. including setting of
intersection filter functions.

Scene flags can be used to configure a scene to use less memory (RTC_SCENE_
FLAG_COMPACT), use more robust traversal algorithms (RTC_SCENE_FLAG_RO-
BUST), and to optimize for dynamic content. See Section rtcSetSceneFlags for
more details.

A build quality can be specified for a scene to balance between accelera-
tion structure build performance and ray query performance. See Section rtc-
SetSceneBuildQuality for more details on build quality.

4.3 Geometry Object

Embree API

40

the rtcSetGeometryTimeStepCount function, and then a vertex buffer for each
time step must be bound, e.g. using the rtcSetSharedGeometryBuffer func-
tion. Optionally, a time range defining the start (and end time) of the first (and
last) time step can be set using the rtcSetGeometryTimeRange function. This
feature will also allow geometries to appear and disappear during the camera
shutter time if the time range is a sub range of [0,1].

44 Ray Queries

The API supports finding the closest hit of a ray segment with the scene (rtcIn-
tersect-type functions), and determining whether any hit between a ray seg-
ment and the scene exists (rtcOccluded-type functions).

Supported are single ray queries (rtcIntersect1 and rtcOccluded1) as
well as ray packet queries for ray packets of size 4 (rtcIntersect4 and rt-
cOccluded4), ray packets of size 8 (rtcIntersect8 and rtcOccludeds), and
ray packets of size 16 (rtcIntersect16 and rtcOccluded16).

See Sections rtcintersectl and rtcOccludedl for a detailed description of how
to set up and trace a ray.

See tutorial Triangle Geometry for a complete example of how to trace single
rays and ray packets.

45 Point Queries

The API supports traversal of the BVH using a point query object that specifies a
location and a query radius. For all primitives intersecting the according domain,
a user defined callback function is called which allows queries such as finding the
closest point on the surface geometries of the scene (see Tutorial Closest Point)
or nearest neighbour queries (see Tutorial Voronoi).

See Section rtcPointQuery for a detailed description of how to set up point
queries.

4.6 Collision Detection

The Embree API also supports collision detection queries between two scenes
consisting only of user geometries. Embree only performs broadphase collision
detection, the narrow phase detection can be performed through a callback func-
tion.

See Section rtcCollide for a detailed description of how to set up collision
detection.

Seen tutorial Collision Detection for a complete example of collision detec-
tion being used on a simple cloth solver.

477 Filter Functions

The API supports filter functions that are invoked for each intersection found
during the rtcIntersect-type or rtcOccluded-type calls.

The filter functions can be set per-geometry using the rtcSetGeometry-
IntersectFilterFunction and rtcSetGeometryOccludedFilterFunction
calls. The former ones are called geometry intersection filter functions, the lat-
ter ones geometry occlusion filter functions. These filter functions are designed
to be used to ignore intersections outside of a user-defined silhouette of a primi-
tive, e.g. to model tree leaves using transparency textures.

Embree API

4]

The filter function can also get passed as arguments directly to the traversal
functions, see section rtcinitintersectArguments and rtclnitOccludedArguments
for more details. These argument filter functions are designed to change the
semantics of the ray query, e.g. to accumulate opacity for transparent shadows,
count the number of surfaces along a ray, collect all hits along a ray, etc. The
argument filter function must be enabled to be used for a scene using the RTC_
SCENE_FLAG_FILTER_FUNCTION_IN_ARGUMENTS scene flag. The callback isonly
invoked for geometries that enable the callback using the rtcSetGeometryEn-
ableFilterFunctionFromArguments call, or enabled for all geometries when
the RTC_RAY_QUERY_FLAG_INVOKE_ARGUMENT_FILTER ray query flag is set.

4.8 BVH Build API

The internal algorithms to build a BVH are exposed through the RTCBVH object
and rtcBuildBVH call. This call makes it possible to build a BVH in a user-
specified format over user-specified primitives. See the documentation of the
rtcBuildBVH call for more details.

42

Chapter 5
Embree SYCL API

Embree supports ray tracing on Intel GPUs by using the SYCL programming
language. SYCL is a Khronos standardized C++ based language for single source
heterogenous programming for acceleration offload, see the SYCL webpage for
details.

The Embree SYCL API is designed for photorealistic rendering use cases,
where scene setup is performed on the host, and rendering on the device. The
Embree SYCL APl is very similar to the standard Embree C99 API, and supports
most of its features, such as all triangle-type geometries, all curve types and ba-
sis functions, point geometry types, user geometries, filter callbacks, multi-level
instancing, and motion blur.

To enable SYCL support you have to include the sycl.hpp file before the
Embree API headers:

#include <sycl/sycl.hpp>
#include <embreed/rtcore.h>

Next you need to initializes an Embree SYCL device using the rtcNewSY-
CLDevice API function by providing a SYCL context.

Embree provides the rtcIsSYCLDeviceSupported API function to check if
some SYCL device is supported by Embree. You can also use the rtcSYCLDe-
viceSelector to conveniently select the first SYCL device that is supported by
Embree, e.g.:

sycl::device device(rtcSYCLDeviceSelector);
sycl::queue queue(device, exception_handler);
sycl::context context(device);

RTCDevice device = rtcNewSYCLDevice(context,"");

Scenes created with an Embree SYCL device can only get used to trace rays
using SYCL on the GPU, it is not possible to trace rays on the CPU with such a
device. To render on the CPU and GPU in parallel, the user has to create a second
Embree device and create a second scene to be used on the CPU.

Files containing SYCL code, have to get compiled with the Intel® oneAPI
DPC++ compiler. Please see section Linux SYCL Compilation and Windows
SYCL Compilation for supported compilers. The DPC++ compiler performs a
two-phase compilation, where host code is compiled in a first phase, and device
code compiled in a second compilation phase.

Standard Embree API functions for scene construction can get used on the
host but not the device. Data buffers that are shared with Embree (e.g. for
vertex of index buffers) have to get allocated as SYCL unified shared memory
(USM memory), using the sycl::malloc or sycl::aligned_alloc calls with
sycl::usm::alloc::shared property, or the sycl:aligned_alloc_shared call,

e.g:

https://www.khronos.org/sycl/

Embree SYCL API

void* ptr = sycl::aligned_alloc(16, bytes, queue, sycl::usm::alloc::shared);

These shared allocations have to be valid during rendering, as Embree may
access contained data when tracing rays. Embree does not support device-only
memory allocations, as the BVH builder implemented on the CPU relies on read-
ing the data buffers.

Device side rendering can get invoked by submitting a SYCL parallel_for
to the SYCL queue:

const sycl::specialization_id<RTCFeatureFlags> feature_mask;
RTCFeatureFlags required_features = RTC_FEATURE_FLAG_TRIANGLE;

queue.submit([=](sycl::handler& cgh)
{

cgh.set_specialization_constant<feature_mask>(required_features);

cgh.parallel_for(sycl::range<1>(1),[=](sycl::id<1> item, sycl::kernel_handler kh)
{

RTCIntersectArguments args;

rtcInitIntersectArguments(&args);

const RTCFeatureFlags features = kh.get_specialization_constant<feature_mask>();
args.feature_mask = features;

struct RTCRayHit rayhit;

rayhit.ray.org_x = ox;

rayhit.ray.org_y = oy;

rayhit.ray.org_z = oz;

rayhit.ray.dir_x = dx;

rayhit.ray.dir_y = dy;

rayhit.ray.dir_z = dz;

rayhit.ray.tnear = 0;

rayhit.ray.tfar = std::numeric_limits<float>::infinity();
rayhit.ray.mask = -1;

rayhit.ray.flags = 0;

rayhit.hit.geomID = RTC_INVALID_GEOMETRY_ID;
rayhit.hit.instID[0] = RTC_INVALID_GEOMETRY_ID;

rtcIntersect1(scene, &rayhit, &args);

result->geomID = rayhit.hit.geomID;
result->primID = rayhit.hit.primID;
result->tfar = rayhit.ray.tfar;
IO
)
queue.wait_and_throw();

This example passes a feature mask using a specialization contant to the
rtcIntersect1 function, which is recommended for GPU rendering. For best
performance, this feature mask should get used to enable only features required
by the application to render the scene, e.g. just triangles in this example.

Inside the SYCL parallel_for loop you can use rendering related functions,
such asthe rtcIntersect1 and rtcOccluded? functions to trace rays, rtcFor -
wardIntersect1/Ex and rtcForwardOccluded1/Ex to continue object traver-
sal from inside a user geometry callback, and rtcGetGeometryUserDataFrom-
Scene to get the user data pointer of some geometry.

Have a look at the Minimal tutorial for a minimal SYCL example.

Embree SYCL API

44

51 SYCL JIT caching

Compile times for just in time compilation (JIT compilation) can be large. To
resolve this issue we recommend enabling persistent JIT compilation caching
inside your application, by setting the SYCL_CACHE_PERSISTENT environment
variable to 1, and the SYCL_CACHE_DIR environment variable to some proper
directory where the JIT cache should get stored. These environment variables
have to get set before the SYCL device is created, e.g:

setenv("SYCL_CACHE_PERSISTENT","1",1);
setenv("SYCL_CACHE_DIR","cache_dir",1);

sycl::device device(rtcSYCLDeviceSelector);

5.2 SYCL Memory Pooling

Memory Pooling is a mechanism where small USM memory allocations are
packed into larger allocation blocks. This mode is required when your appli-
cation performs many small USM allocations, as otherwise only a small fraction
of GPU memory is usable and data transfer performance will be low.

Memory pooling is supported for USM allocations that are read-only by the
device. The following example allocated device read-only memory with memory
pooling support:

sycl::aligned_alloc_shared(align, bytes, queue,
sycl::ext::oneapi::property::usm::device_read_only());

5.3 Embree SYCL Limitations

Embree only supports Xe HPC and HPG GPUs as SYCL devices, thus in particular
the CPU and other GPUs cannot get used as a SYCL device. To render on the CPU
just use the standard C99 API without relying on SYCL.

The SYCL language spec puts some restrictions to device functions, such as
disallowing: global variable access, malloc, invokation of virtual functions, func-
tion pointers, runtime type information, exceptions, recursion, etc. See Section
5.4. Language Restrictions for device functions of the SYCL specifi-
cation for more details.

Using Intel’s oneAPI DPC++ compiler invoking an indirectly called function
is allowed, but we do not recommend this for performance reasons.

Some features are not supported by the Embree SYCL API thus cannot get
used on the GPU:

 The packet tracing functions rtcIntersect4/8/16 and rtcOccluded4/
8/16 are not supported in SYCL device side code. Using these functions
makes no sense for SYCL, as the programming model is implicitely exe-
cuted in SIMT mode on the GPU anyway.

« Filter and user geometry callbacks stored inside the geometry objects are
not supported on SYCL. Please use the alternative approach of passing
the function pointer through the RTCIntersectArguments (or RTCOc-
cludedArguments) structures to the tracing function, which enables in-
lining on the GPU.

* The rtcInterpolate function cannot get used on the the device. For most
primitive types the vertex data interpolation is anyway a trivial operation,

https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#sec:language.restrictions.kernels
https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#sec:language.restrictions.kernels

Embree SYCL API

and an API call just introduces overheads. On the CPU that overhead is
acceptable, but on the GPU it is not. The rtcInterpolate function does
not know the geometry type it is interpolating over, thus its implementa-
tion on the GPU would contain a large switch statement for all potential
geometry types.

» Tracing rays using rtcIntersect?1 and rtcOccluded1 functions from
user geometry callbacks is not supported in SYCL. Please use the tail recur-
sive rtcForwardIntersect1 and rtcForwardOccluded1 calls instead.

« Subdivision surfaces are not supported for Embree SYCL devices.

« Collision detection (rtcCollide API call) is not supported in SYCL device
side code.

« Point queries (rtcPointQuery API call) are not supported in SYCL device
side code.

54 Embree SYCL Known Issues

» The SYCL support of Embree is in beta phase. Current functionality, qual-
ity, and GPU performance may not reflect that of the final product.

« Compilation with build configuration “debug” is currently not working on
Windows.

46

Chapter 6

Upgrading from Embree 3to Em-
bree 4

This section summarizes API changes between Embree 3 and Embree4. Most of
these changes are motivated by GPU performance and having a consistent API
that works properly for the CPU and GPU.

« The API include folder got renamed from embree3 to embree4, to be able
to install Embree 3 and Embree 4 side by side, without having conflicts in
API folder.

e The RTCIntersectContext is renamed to RTCRayQueryContext and the
RTCIntersectContextFlags got renamed to RTCRayQueryFlags.

» There are some changes to the rtcIntersect and rtcOccluded func-
tions. Most members of the old intersect context have been moved to some
optional RTCIntersectArguments (and RTCOccludedArguments) struc-
tures, which also contains a pointer to the new ray query context. The ar-
gument structs fulfill the task of providing additional advanced arguments
to the traversal functions. The ray query context can get used to pass addi-
tional data to callbacks, and to maintain an instID stack in case instancing
is done manually inside user geometry callbacks. The arguments struct is
not available inside callbacks. This change was in particular necessary for
SYCL to allow inlining of function pointers provided to the traversal func-
tions, and to reduce the amount of state passed to callbacks, which both
improves GPU performance. Most applications can just drop passing the
ray query context to port to Embree 4.

e The rtcFilterIntersection and rtcFilterOcclusion API calls that
invoke both, the geometry and argument version of the filter callback, from
a user geometry callback are no longer supported. Instead applications
should use the rtcInvokeIntersectFilterFromGeometry and rtcIn-
vokeOccludedFilterFromGeometry API calls that invoke just the geom-
etry version of the filter function, and invoke the argument filter function
manually if required.

» The filter function passed as arguments to rtcIntersect and rtcOc-
cluded functions is only invoked for some geometry if enabled through
rtcSetGeometryEnableFilterFunctionFromArguments for that geom-
etry. Alternatively, argument filter functions can get enabled for all ge-
ometries using the RTC_RAY_QUERY_FLAG_INVOKE_ARGUMENT_FILTER ray
query flag.

Upgrading from Embree 3 to Embree 4

 User geometry callbacks get a valid vector as input to identify valid and
invalid rays. In Embree 3 the user geometry callback just had to update the
ray hit members when an intersection was found and perform no operation
otherwise. In Embree 4 the callback additionally has to return valid=-1
when a hit was found, and valid=0 when no hit was found. This allows
Embree to properly pass the new hit distance to the ray tracing hardware
only in the case a hit was found.

« Further ray masking is enabled by default now as required by most ap-
plications and the default ray mask for geometries got changed from
OXFFFFFFFF to Ox1.

e Thestream tracing functions rtcIntersect1M, rtcIntersect1Mp, rtcIn-
tersectNM, rtcIntersectNp, rtcOccludediM, rtcOccludediMp, rt-
cOccludedNM, and rtcOccludedNp got removed as they were rarely used
and did not provide relevant performance benefits. As alternative the
application can just iterate over rtcIntersect? and potentially rtcIn-
tersect4/8/16 to get similar performance.

To use Embree through SYCL on the CPU and GPU additional changes are
required:

« Embree 3 allows to use rtcIntersect recursively from a user geometry
or intersection filter callback to continue a ray inside an instantiated ob-
ject. In Embree 4 using rtcIntersect recursively is disallowed on the
GPU but still supported on the CPU. To properly continue a ray inside an
instantiated object use the new rtcForwardIntersect? and rtcForwar-
dOccluded1 functions.

« The geometry object of Embree 4 is a host side only object, thus accessing
it during rendering from the GPU is not allowed. Thus all API functions
that take an RTCGeometry object as argument cannot get used during ren-
dering. Thus in particular the rtcGetGeometryUserData(RTCGeometry)
call cannot get used, but there is an alternative function rtcGetGeom-
etryUserDataFromScene(RTCScene scene,uint geomID) that should
get used instead.

 The user geometry callback and filter callback functions should get passed
through the intersection and occlusion argument structures to the rtcIn-
tersect1 and rtcOccluded1 functions directly to allow inlining. The
experimental geometry version of the callbacks is disabled in SYCL and
should not get used.

* The feature flags should get used in SYCL to minimal GPU code for optimal
performance.

* The rtcInterpolate function cannot get used on the device, and vertex
data interpolation should get implemented by the application.

« Indirectly called functions must be declared with RTC_SYCL_INDIRECTLY_
CALLABLE when used as filter or user geometry callbacks.

48

Chapter 7

Embree API| Reference

/71 rtcNewDevice

NAME

rtcNewDevice - creates a new device

SYNOPSIS

#include <embree4/rtcore.h>

RTCDevice rtcNewDevice(const char* config);

DESCRIPTION

This function creates a new device to be used for CPU ray tracing and returns
a handle to this device. The device object is reference counted with an initial
reference count of 1. The handle can be released using the rtcReleaseDevice
API call.

The device object acts as a class factory for all other object types. All objects
created from the device (like scenes, geometries, etc.) hold a reference to the
device, thus the device will not be destroyed unless these objects are destroyed
first.

Objects are only compatible if they belong to the same device, e.g it is not
allowed to create a geometry in one device and attach it to a scene created with
a different device.

A configuration string (config argument) can be passed to the device con-
struction. This configuration string can be NULL to use the default configuration.

The following configuration is supported:

e threads=[int]: Specifies a number of build threads to use. A value of 0
enables all detected hardware threads. By default all hardware threads are
used.

* user_threads=[int]: Sets the number of user threads that can be used to
join and participate in a scene commit using rtcJoinCommitScene. The
tasking system will only use threads-user_threads many worker threads,
thus if the app wants to solely use its threads to commit scenes, just set
threads equal to user_threads. This option only has effect with the Intel(R)
Threading Building Blocks (TBB) tasking system.

e set_affinity=[0/1]: When enabled, build threads are affinitized to
hardware threads. This option is disabled by default on standard CPUs,
and enabled by default on Xeon Phi Processors.

Embree API Reference

49

start_threads=[0/1]: When enabled, the build threads are started up-
front. This can be useful for benchmarking to exclude thread creation time.
This option is disabled by default.

isa=[sse2,sse4.2,avx,avx2,avx512]: Use specified ISA. By default
the ISA is selected automatically.

max_isa=[sse2,sse4.2,avx,avx2,avx512]: Configures the automated
ISA selection to use maximally the specified ISA.

hugepages=[0/1]: Enables or disables usage of huge pages. Under Linux
huge pages are used by default but under Windows and macOS they are
disabled by default.

enable_selockmemoryprivilege=[0/1]: When set to 1, this enables the
SeLockMemoryPrivilege privilege with is required to use huge pages on
Windows. This option has an effect only under Windows and is ignored
on other platforms. See Section Huge Page Support for more details.

verbose=[0,1,2,3]: Sets the verbosity of the output. When set to 0, no
output is printed by Embree, when set to a higher level more output is
printed. By default Embree does not print anything on the console.

frequency_level=[simd128,simd256,simd512]: Specifies the frequency
level the application want to run on, which can be either:

a) simd128 to run at highest frequency

b) simd256 to run at AVX2-heavy frequency level

¢) simd512 to run at heavy AVX512 frequency level. When some fre-
quency level is specified, Embree will avoid doing optimizations that
may reduce the frequency level below the level specified. E.g. if your
app does not use AVX instructions setting “frequency_level=simd128”
will cause some CPUs to run at highest frequency, which may result
in higher application performance if you do much shading. If you ap-
plication heavily uses AVX code, you should best set the frequency
level to simd256. Per default Embree tries to avoid reducing the fre-
quency of the CPU by setting the simd256 level only when the CPU
has no significant down clocking.

Different configuration options should be separated by commas, e.g.:

rtcNewDevice("threads=1,isa=avx");

EXIT STATUS

On success returns a handle of the created device. On failure returns NULL as
device and sets a per-thread error code that can be queried using rtcGetDe-
viceError(NULL).

SEE ALSO

rtcRetainDevice, rtcReleaseDevice, ritcNewSYCLDevice

Embree API Reference

7.2 rtcNewSYCLDevice

NAME

rtcNewSYCLDevice - creates a new device to be used with SYCL

SYNOPSIS

#include <embree4/rtcore.h>

RTCDevice rtcNewSYCLDevice(sycl::context context, const char* config);

DESCRIPTION

This function creates a new device to be used with SYCL for GPU rendering
and returns a handle to this device. The device object is reference counted with
an initial reference count of 1. The handle can get released using the rtcRe-
leaseDevice API call.

The passed SYCL context (context argument) is used to allocate GPU data,
thus only devices contained inside this context can be used for rendering. By
default the GPU data is allocated on the first GPU device of the context, but this
behavior can get changed with the rtcSetDeviceSYCLDevice function.

The device object acts as a class factory for all other object types. All objects
created from the device (like scenes, geometries, etc.) hold a reference to the
device, thus the device will not be destroyed unless these objects are destroyed
first.

Objects are only compatible if they belong to the same device, e.g it is not
allowed to create a geometry in one device and attach it to a scene created with
a different device.

For an overview of configurations that can get passed (config argument)
please see the rtcNewDevice function description.

EXIT STATUS

On success returns a handle of the created device. On failure returns NULL as
device and sets a per-thread error code that can be queried using rtcGetDe-
viceError (NULL).

SEE ALSO

rtcRetainDevice, rtcReleaseDevice, rtcNewDevice

Embree API Reference

51

7.3 rtclsSYCLDeviceSupported

NAME

rtcIsSYCLDeviceSupported - checks if some SYCL device is supported by Embree

SYNOPSIS

#include <embree4/rtcore.h>

bool rtcIsSYCLDeviceSupported(const sycl::device sycl_device);

DESCRIPTION

This function can be used to check if some SYCL device (sycl_device argument)
is supported by Embree.

EXIT STATUS

The function returns true if the SYCL device is supported by Embree and false
otherwise. On failure an error code is set that can get queried using rtcGetDe-
viceError.

SEE ALSO
rtcSYCLDeviceSelector

Embree API Reference

52

74 rtcSYCLDeviceSelector

NAME

rtcSYCLDeviceSelector - SYCL device selector function to select
devices supported by Embree

SYNOPSIS

#include <embree4/rtcore.h>
int rtcSYCLDeviceSelector(const sycl::device sycl_device);

DESCRIPTION

This function checks if the passed SYCL device (sycl_device arguments) is sup-
ported by Embree or not. This function can be used directly to select some sup-
ported SYCL device by using it as SYCL device selector function. For instance, the
following code sequence selects an Embree supported SYCL device and creates
an Embree device from it:

sycl::device sycl_device(rtcSYCLDeviceSelector);
sycl::queue sycl_queue(sycl_device);
sycl::context(sycl_device);

RTCDevice device = rtcNewSYCLDevice(sycl_context,nullptr);

EXIT STATUS

The function returns -1 if the SYCL device is supported by Embree and 1 other-
wise. On failure an error code is set that can get queried using rtcGetDeviceEr-
ror.

SEE ALSO
rtclsSYCLDeviceSupported

Embree APl Reference 53

75 rtcSetDeviceSYCLDevice

NAME

rtcSetDeviceSYCLDevice - sets the SYCL device to be used for memory allocations

SYNOPSIS

#include <embree4/rtcore.h>

void rtcSetDeviceSYCLDevice(RTCDevice device, const sycl::device sycl_device);

DESCRIPTION

This function sets the SYCL device (sycl_device argument) to be used to allo-
cate GPU memory when using the specified Embree device (device argument).
This SYCL device must be one of the SYCL devices contained inside the SYCL
context used to create the Embree device.

EXIT STATUS

On failure an error code is set that can get queried using rtcGetDeviceError.

SEE ALSO
rtcNewSYCLDevice

Embree APl Reference 54

7.6 rtcRetainDevice

NAME

rtcRetainDevice - increments the device reference count

SYNOPSIS

#include <embree4/rtcore.h>

void rtcRetainDevice(RTCDevice device);

DESCRIPTION

Device objects are reference counted. The rtcRetainDevice function incre-
ments the reference count of the passed device object (device argument). This
function together with rtcReleaseDevice allows to use the internal reference
counting in a C++ wrapper class to manage the ownership of the object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewDevice, rtcReleaseDevice

Embree API Reference 55

/.7 rtcReleaseDevice

NAME

rtcReleaseDevice - decrements the device reference count

SYNOPSIS

#include <embree4/rtcore.h>

void rtcReleaseDevice(RTCDevice device);

DESCRIPTION

Device objects are reference counted. The rtcReleaseDevice function decre-
ments the reference count of the passed device object (device argument). When
the reference count falls to 0, the device gets destroyed.

All objects created from the device (like scenes, geometries, etc.) hold a ref-
erence to the device, thus the device will not get destroyed unless these objects
are destroyed first.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewDevice, rtcRetainDevice

Embree API Reference

7.8

rtcGetDeviceProperty

NAME

rtcGetDeviceProperty - queries properties of the device

SYNOPSIS

#include <embree4/rtcore.h>

ssize_t rtcGetDeviceProperty(
RTCDevice device,
enum RTCDeviceProperty prop

);

DESCRIPTION

The rtcGetDeviceProperty function can be used to query properties (prop
argument) of a device object (device argument). The returned property is an
integer of type ssize_t.

Possible properties to query are:

RTC_DEVICE_PROPERTY_VERSION: Queries the combined version number
(MAJOR.MINOR.PATCH) with two decimal digits per component. E.g. for
Embree 2.8.3 the integer 208003 is returned.

RTC_DEVICE_PROPERTY_VERSION_MAJOR: Queries the major version num-
ber of Embree.

RTC_DEVICE_PROPERTY_VERSION_MINOR: Queries the minor version num-
ber of Embree.

RTC_DEVICE_PROPERTY_VERSION_PATCH: Queries the patch version num-
ber of Embree.

RTC_DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED: Queries whether the
rtcIntersect4and rtcOccluded4 functions preserve packet size and ray
order when invoking callback functions. This is only the case if Embree is
compiled with EMBREE_RAY_PACKETS and SSE2 (or SSE4.2) enabled, and
if the machine it is running on supports SSE2 (or SSE4. 2).

RTC_DEVICE_PROPERTY_NATIVE_RAY8_SUPPORTED: Queries whether the
rtcIntersect8and rtcOccluded8 functions preserve packet size and ray
order when invoking callback functions. This is only the case if Embree
is compiled with EMBREE_RAY_PACKETS and AVX (or AvX2) enabled, and if
the machine it is running on supports AvX (or AvX2).

RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED: Queries whether the
rtcIntersect16 and rtcOccluded16 functions preserve packet size and
ray order when invoking callback functions. This is only the case if Em-
bree is compiled with EMBREE_RAY_PACKETS and AVX512 enabled, and if
the machine it is running on supports AVX512.

RTC_DEVICE_PROPERTY_RAY_MASK_SUPPORTED: Queries whether ray masks
are supported. This is only the case if Embree is compiled with EMBREE_
RAY_MASK enabled.

RTC_DEVICE_PROPERTY_BACKFACE_CULLING_ENABLED: Queries whether
back face culling is enabled. This is only the case if Embree is compiled
with EMBREE_BACKFACE_CULLING enabled.

Embree API Reference

57

RTC_DEVICE_PROPERTY_BACKFACE_CULLING_CURVES_ENABLED: Queries
whether back face culling for curves is enabled. This is only the case if
Embree is compiled with EMBREE_BACKFACE_CULLING_CURVES enabled.

RTC_DEVICE_PROPERTY_BACKFACE_CULLING_SPHERES_ENABLED: Queries
whether back face culling for spheres is enabled. This is only the case if
Embree is compiled with EMBREE_BACKFACE_CULLING_SPHERES enabled.

RTC_DEVICE_PROPERTY_COMPACT_POLYS_ENABLED: Queries whether com-
pact polys is enabled. This is only the case if Embree is compiled with
EMBREE_COMPACT_POLYS enabled.

RTC_DEVICE_PROPERTY_FILTER_FUNCTION_SUPPORTED: Queries whether
filter functions are supported, which is the case if Embree is compiled with
EMBREE_FILTER_FUNCTION enabled.

RTC_DEVICE_PROPERTY_IGNORE_INVALID_RAYS_ENABLED: Queries whether
invalid rays are ignored, which is the case if Embree is compiled with EM-
BREE_IGNORE_INVALID_RAYS enabled.

RTC_DEVICE_PROPERTY_TRIANGLE_GEOMETRY_SUPPORTED: Queries whether
triangles are supported, which is the case if Embree is compiled with EM-
BREE_GEOMETRY_TRIANGLE enabled.

RTC_DEVICE_PROPERTY_QUAD_GEOMETRY_SUPPORTED: Queries whether
quads are supported, which is the case if Embree is compiled with EM-
BREE_GEOMETRY_QUAD enabled.

RTC_DEVICE_PROPERTY_SUBDIVISION_GEOMETRY_SUPPORTED: Queries whether
subdivision meshes are supported, which is the case if Embree is compiled
with EMBREE_GEOMETRY_SUBDIVISION enabled.

RTC_DEVICE_PROPERTY_CURVE_GEOMETRY_SUPPORTED: Queries whether
curves are supported, which is the case if Embree is compiled with EM-
BREE_GEOMETRY_CURVE enabled.

RTC_DEVICE_PROPERTY_POINT_GEOMETRY_SUPPORTED: Queries whether
points are supported, which is the case if Embree is compiled with EM-
BREE_GEOMETRY_POINT enabled.

RTC_DEVICE_PROPERTY_USER_GEOMETRY_SUPPORTED: Queries whether
user geometries are supported, which is the case if Embree is compiled
with EMBREE_GEOMETRY_USER enabled.

RTC_DEVICE_PROPERTY_TASKING_SYSTEM: Queries the tasking system
Embree is compiled with. Possible return values are:

0. internal tasking system
1. Intel Threading Building Blocks (TBB)
2. Parallel Patterns Library (PPL)

RTC_DEVICE_PROPERTY_JOIN_COMMIT_SUPPORTED: Queries whether rtcJoin-
CommitScene is supported. This is not the case when Embree is compiled
with PPL or older versions of TBB.

RTC_DEVICE_PROPERTY_PARALLEL_COMMIT_SUPPORTED: Queries whether
rtcCommitScene can get invoked from multiple TBB worker threads con-
currently. This feature is only supported starting with TBB 2019 Update
9.

Embree API Reference

58

EXIT STATUS

On success returns the value of the queried property. For properties returning a
boolean value, the return value 0 denotes false and 1 denotes true.

On failure zero is returned and an error code is set that can be queried using
rtcGetDeviceError.

Embree APl Reference 59

79 rtcGetDeviceError

NAME

rtcGetDeviceError - returns the error code of the device

SYNOPSIS

#include <embree4/rtcore.h>

RTCError rtcGetDeviceError(RTCDevice device);

DESCRIPTION

Each thread has its own error code per device. If an error occurs when calling

an API function, this error code is set to the occurred error if it stores no pre-

vious error. The rtcGetDeviceError function reads and returns the currently

stored error and clears the error code. This assures that the returned error code is

always the first error occurred since the last invocation of rtcGetDeviceError.
Possible error codes returned by rtcGetDeviceError are:

* RTC_ERROR_NONE: No error occurred.
* RTC_ERROR_UNKNOWN: An unknown error has occurred.
e RTC_ERROR_INVALID_ARGUMENT: An invalid argument was specified.

e RTC_ERROR_INVALID_OPERATION: The operation is not allowed for the
specified object.

e RTC_ERROR_OUT_OF_MEMORY: There is not enough memory left to com-
plete the operation.

e RTC_ERROR_UNSUPPORTED_CPU: The CPU is not supported as it does not
support the lowest ISA Embree is compiled for.

e RTC_ERROR_CANCELLED: The operation got canceled by a memory monitor
callback or progress monitor callback function.

When the device construction fails, rtcNewDevice returns NULL as device.
To detect the error code of a such a failed device construction, pass NULL as de-
vice to the rtcGetDeviceError function. For all other invocations of rtcGet-
DeviceError, a proper device pointer must be specified.
EXIT STATUS

Returns the error code for the device.

SEE ALSO

rtcSetDeviceErrorFunction

Embree API Reference

60

710 rtcSetDeviceErrorFunction

Embree API Reference

711 rtcSetDeviceMemoryMonitorFunction

NAME

rtcSetDeviceMemoryMonitorFunction - registers a callback function
to track memory consumption

SYNOPSIS

#include <embree4/rtcore.h>

typedef bool (*RTCMemoryMonitorFunction)(
void* userPtr,

ssize_t bytes,

bool post

);

void rtcSetDeviceMemoryMonitorFunction(
RTCDevice device,
RTCMemoryMonitorFunction memoryMonitor,
void* userPtr

DESCRIPTION

Using the rtcSetDeviceMemoryMonitorFunction call, it is possible to regis-
ter a callback function (memoryMonitor argument) with payload (userPtr argu-
ment) for a device (device argument), which is called whenever internal memory
is allocated or deallocated by objects of that device. Using this memory monitor
callback mechanism, the application can track the memory consumption of an
Embree device, and optionally terminate API calls that consume too much mem-
ory.

Only a single callback function can be registered per device, and further invo-
cations overwrite the previously set callback function. Passing NULL as function
pointer disables the registered callback function.

Once registered, the Embree device will invoke the memory monitor callback
function before or after it allocates or frees important memory blocks. The call-
back function gets passed the payload as specified at registration time (userPtr
argument), the number of bytes allocated or deallocated (bytes argument), and
whether the callback is invoked after the allocation or deallocation took place
(post argument). The callback function might get called from multiple threads
concurrently.

The application can track the current memory usage of the Embree device
by atomically accumulating the bytes input parameter provided to the callback
function. This parameter will be >0 for allocations and <0 for deallocations.

Embree will continue its operation normally when returning true from the
callback function. If false is returned, Embree will cancel the current opera-
tion with the RTC_ERROR_OUT_OF_MEMORY error code. Issuing multiple cancel
requests from different threads is allowed. Canceling will only happen when the
callback was called for allocations (bytes > 0), otherwise the cancel request will
be ignored.

If a callback to cancel was invoked before the allocation happens (post ==
false), then the bytes parameter should not be accumulated, as the allocation
will never happen. If the callback to cancel was invoked after the allocation
happened (post == true), then the bytes parameter should be accumulated,
as the allocation properly happened and a deallocation will later free that data
block.

Embree API Reference

62

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewDevice

Embree APl Reference 63

712 rtcNewScene

NAME

rtcNewScene - creates a new scene

SYNOPSIS

#include <embree4/rtcore.h>

RTCScene rtcNewScene(RTCDevice device);

DESCRIPTION

This function creates a new scene bound to the specified device (device argu-
ment), and returns a handle to this scene. The scene object is reference counted
with an initial reference count of 1. The scene handle can be released using the
rtcReleaseScene API call.

EXIT STATUS

On success a scene handle is returned. On failure NULL is returned and an error
code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcRetainScene, rtcReleaseScene

Embree API Reference

64

713 rtcGetSceneDevice

NAME

rtcGetSceneDevice - returns the device the scene got created in

SYNOPSIS

#include <embree4/rtcore.h>

RTCDevice rtcGetSceneDevice(RTCScene scene);

DESCRIPTION

This function returns the device object the scene got created in. The returned
handle own one additional reference to the device object, thus you should need
to call rtcReleaseDevice when the returned handle is no longer required.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcReleaseDevice

Embree API Reference 65

714 rtcRetainScene

NAME

rtcRetainScene - increments the scene reference count

SYNOPSIS

#include <embree4/rtcore.h>

void rtcRetainScene(RTCScene scene);

DESCRIPTION

Scene objects are reference counted. The rtcRetainScene function increments
the reference count of the passed scene object (scene argument). This function
together with rtcReleaseScene allows to use the internal reference counting
in a C++ wrapper class to handle the ownership of the object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewScene, rtcReleaseScene

Embree APl Reference 66

715 rtcReleaseScene

NAME

rtcReleaseScene - decrements the scene reference count

SYNOPSIS

#include <embree4/rtcore.h>

void rtcReleaseScene(RTCScene scene);

DESCRIPTION

Scene objects are reference counted. The rtcReleaseScene function decre-
ments the reference count of the passed scene object (scene argument). When
the reference count falls to 0, the scene gets destroyed.

The scene holds a reference to all attached geometries, thus if the scene gets
destroyed, all geometries get detached and their reference count decremented.
EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewScene, rtcRetainScene

Embree API Reference

716 rtcAttachGeometry

NAME

rtcAttachGeometry - attaches a geometry to the scene

SYNOPSIS

#include <embree4/rtcore.h>

unsigned int rtcAttachGeometry(
RTCScene scene,

RTCGeometry geometry

)

DESCRIPTION

The rtcAttachGeometry function attaches a geometry (geometry argument)
to a scene (scene argument) and assigns a geometry ID to that geometry. All
geometries attached to a scene are defined to be included inside the scene. A
geometry can get attached to multiple scenes. The geometry ID is unique for the
scene, and is used to identify the geometry when hit by a ray during ray queries.

This function is thread-safe, thus multiple threads can attach geometries to
a scene in parallel.

The geometry IDs are assigned sequentially, starting from 0, as long as no ge-
ometry got detached. If geometries got detached, the implementation will reuse
IDs in an implementation dependent way. Consequently sequential assignment
is no longer guaranteed, but a compact range of IDs.

These rules allow the application to manage a dynamic array to efficiently
map from geometry IDs to its own geometry representation. Alternatively, the
application can also use per-geometry user data to map to its geometry represen-
tation. See rtcSetGeometryUserDataand rtcGetGeometryUserData for more
information.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryUserData, rtcGetGeometryUserData

Embree API Reference

717 rtcAttachGeometryByID

NAME

rtcAttachGeometryByID - attaches a geometry to the scene
using a specified geometry ID

SYNOPSIS

#include <embree4/rtcore.h>

void rtcAttachGeometryByID(
RTCScene scene,
RTCGeometry geometry,
unsigned int geomID

);

DESCRIPTION

The rtcAttachGeometryByID function attaches a geometry (geometry argu-
ment) to a scene (scene argument) and assigns a user provided geometry 1D
(geomID argument) to that geometry. All geometries attached to a scene are de-
fined to be included inside the scene. A geometry can get attached to multiple
scenes. The passed user-defined geometry ID is used to identify the geometry
when hit by a ray during ray queries. Using this function, it is possible to share
the same IDs to refer to geometries inside the application and Embree.

This function is thread-safe, thus multiple threads can attach geometries to
a scene in parallel.

The user-provided geometry ID must be unused in the scene, otherwise the
creation of the geometry will fail. Further, the user-provided geometry IDs
should be compact, as Embree internally creates a vector which size is equal to
the largest geometry ID used. Creating very large geometry 1Ds for small scenes
would thus cause a memory consumption and performance overhead.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO
rtcAttachGeometry

Embree API Reference 69

718 rtcDetachGeometry

NAME

rtcDetachGeometry - detaches a geometry from the scene

SYNOPSIS

#include <embree4/rtcore.h>

void rtcDetachGeometry(RTCScene scene, unsigned int geomID);

DESCRIPTION

This function detaches a geometry identified by its geometry ID (geomID argu-
ment) from a scene (scene argument). When detached, the geometry is no longer
contained in the scene.

This function is thread-safe, thus multiple threads can detach geometries
from a scene at the same time.
EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO
rtcAttachGeometry, rtcAttachGeometryByID

Embree API Reference

719 rtcGetGeometry

NAME

rtcGetGeometry - returns the geometry bound to
the specified geometry ID

SYNOPSIS

#include <embree4/rtcore.h>

RTCGeometry rtcGetGeometry(RTCScene scene, unsigned int geomID);

DESCRIPTION

The rtcGetGeometry function returns the geometry that is bound to the speci-
fied geometry ID (geomID argument) for the specified scene (scene argument).
This function just looks up the handle and does not increment the reference count.
If you want to get ownership of the handle, you need to additionally call rtcRe-
tainGeometry.

This function is not thread safe and thus can be used during rendering. How-
ever, it is generally recommended to store the geometry handle inside the ap-
plication’s geometry representation and look up the geometry handle from that
representation directly.

If you need a thread safe version of this function please use rtcGetGeometry-
ThreadSafe.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO
rtcAttachGeometry, rtcAttachGeometryByID, rtcGetGeometryThreadSafe

Embree APl Reference 71

720 rtcGetGeometryThreadSafe

NAME

rtcGetGeometryThreadSafe - returns the geometry bound to
the specified geometry ID

SYNOPSIS

#include <embree4/rtcore.h>

RTCGeometry rtcGetGeometryThreadSafe(RTCScene scene, unsigned int geomID);

DESCRIPTION

The rtcGetGeometryThreadSafe function returns the geometry that is bound
to the specified geometry ID (geomID argument) for the specified scene (scene
argument). This function just looks up the handle and does not increment the
reference count. If you want to get ownership of the handle, you need to addi-
tionally call rtcRetainGeometry.

This function is thread safe and should NOT get used during rendering. If
you need a fast non-thread safe version during rendering please use the rtcGet-
Geometry function.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError

SEE ALSO
rtcAttachGeometry, rtcAttachGeometryByID, rtcGetGeometry

Embree API Reference 72

721 rtcCommitScene

NAME

rtcCommitScene - commits scene changes

SYNOPSIS

#include <embree4/rtcore.h>

void rtcCommitScene(RTCScene scene);

DESCRIPTION

The rtcCommitScene function commits all changes for the specified scene
(scene argument). This internally triggers building of a spatial acceleration
structure for the scene using all available worker threads. Ray queries can be
performed only after committing all scene changes.

If the application uses TBB 2019 Update 9 or later for parallelization of render-
ing, lazy scene construction during rendering is supported by rtcCommitScene.
Therefore rtcCommitScene can get called from multiple TBB worker threads
concurrently for the same scene. The rtcCommitScene function will then inter-
nally isolate the scene construction using a tbb::isolated_task_group. The alter-
native approach of using rtcJoinCommitScene which uses an thb:task_arena
internally, is not recommended due to it’s high runtime overhead.

If scene geometries get modified or attached or detached, the rtcCommitScene
call must be invoked before performing any further ray queries for the scene; oth-
erwise the effect of the ray query is undefined. The modification of a geometry,
committing the scene, and tracing of rays must always happen sequentially, and
never at the same time. Any API call that sets a property of the scene or geome-
tries contained in the scene count as scene modification, e.g. including setting of
intersection filter functions.

The kind of acceleration structure built can be influenced using scene flags
(see rtcSetSceneFlags), and the quality can be specified usingthe rtcSetSceneB-
uildQuality function.

Embree silently ignores primitives during spatial acceleration structure con-
struction that would cause numerical issues, e.g. primitives containing NaNs,
INFs, or values greater than 1.844E18f (as no reasonable calculations can be per-
formed with such values without causing overflows).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcJoinCommitScene

Embree API Reference

7.22 rtcdoinCommitScene

NAME

rtcJoinCommitScene - commits the scene from multiple threads

SYNOPSIS

#include <embree4/rtcore.h>

void rtcJoinCommitScene(RTCScene scene);

DESCRIPTION

The rtcJoinCommitScene function commits all changes for the specified scene
(scene argument). The scene commit internally triggers building of a spatial
acceleration structure for the scene. Ray queries can be performed after scene
changes got properly committed.

The rtcJoinCommitScene function can get called from multiple user threads
which will all cooperate in the build operation. All threads calling into this
function will return from rtcJoinCommitScene after the scene commit is fin-
ished. All threads must consistently call rtcJoinCommitScene and not rtc-
CommitScene.

In contrast to the rtcCommitScene function, the rtcJoinCommitScene func-
tion can be called from multiple user threads, while the rtcCommitScene can
only get called from multiple TBB worker threads when used concurrently. For
optimal performance we strongly recommend using TBB inside the application
together with the rtcCommitScene function and to avoid using the rtcJoin-
CommitScene function.

The rtcJoinCommitScene feature allows a flexible way to lazily create hi-
erarchies during rendering. A thread reaching a not-yet-constructed sub-scene
of a two-level scene can generate the sub-scene geometry and call rtcJoinCom-
mitScene on that just generated scene. During construction, further threads
reaching the not-yet-built scene can join the build operation by also invoking
rtcJoinCommitScene. A thread that calls rtcJoinCommitScene after the build
finishes will directly return from the rtcJoinCommitScene call.

Multiple scene commit operations on different scenes can be running at the
same time, hence it is possible to commit many small scenes in parallel, distribut-
ing the commits to many threads.

When using Embree with the Intel® Threading Building Blocks (which is the
default), threads that call rtcJoinCommitScene will join the build operation, but
other TBB worker threads might also participate in the build. To avoid thread
oversubscription, we recommend using TBB also inside the application. Further,
the join mode only works properly starting with TBB v4.4 Update 1. For ear-
lier TBB versions, threads that call rtcJoinCommitScene to join a running build
will just trigger the build and wait for the build to finish. Further, old TBB ver-
sions with TBB_INTERFACE_VERSION_MAJOR < 8 do not support rtcJoinCom-
mitScene, and invoking this function will result in an error.

When using Embree with the internal tasking system, only threads that
call rtcJoinCommitScene will perform the build operation, and no additional
worker threads will be scheduled.

When using Embree with the Parallel Patterns Library (PPL), rtcJoinCom-
mitScene is not supported and calling that function will result in an error.

To detect whether rtcJoinCommitScene is supported, use the rtcGetDevi-
ceProperty function.

Embree API Reference

74

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcCommitScene, rtcGetDeviceProperty

Embree API Reference

75

723 rtcSetSceneProgressMonitorFunction

NAME

rtcSetSceneProgressMonitorFunction - registers a callback
to track build progress

SYNOPSIS

#include <embree4/rtcore.h>

typedef bool (*RTCProgressMonitorFunction)(
void* ptr,

double n

),

void rtcSetSceneProgressMonitorFunction(
RTCScene scene,
RTCProgressMonitorFunction progress,
void* userPtr

)

DESCRIPTION

Embree supports a progress monitor callback mechanism that can be used to
report progress of hierarchy build operations and to cancel build operations.

The rtcSetSceneProgressMonitorFunction registers a progress monitor
callback function (progress argument) with payload (userPtr argument) for
the specified scene (scene argument).

Only a single callback function can be registered per scene, and further invo-
cations overwrite the previously set callback function. Passing NULL as function
pointer disables the registered callback function.

Once registered, Embree will invoke the callback function multiple times dur-
ing hierarchy build operations of the scene, by passing the payload as set at regis-
tration time (userPtr argument), and adouble in the range [0, 1] which estimates
the progress of the operation (n argument). The callback function might be called
from multiple threads concurrently.

When returning true from the callback function, Embree will continue the
build operation normally. When returning false, Embree will cancel the build
operation with the RTC_ERROR_CANCELLED error code. Issuing multiple cancel
requests for the same build operation is allowed.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewScene

Embree APl Reference 76

7.24 rtcSetSceneBuildQuality

NAME

rtcSetSceneBuildQuality - sets the build quality for
the scene

SYNOPSIS

#include <embree4/rtcore.h>

void rtcSetSceneBuildQuality(
RTCScene scene,

enum RTCBuildQuality quality
),

DESCRIPTION

The rtcSetSceneBuildQuality function sets the build quality (quality argu-
ment) for the specified scene (scene argument). Possible values for the build
quality are:

e RTC_BUILD_QUALITY_LOW; Create lower quality data structures, e.g. for
dynamic scenes. A two-level spatial index structure is built when enabling
this mode, which supports fast partial scene updates, and allows for setting
a per-geometry build quality through the rtcSetGeometryBuildQuality
function.

e RTC_BUILD_QUALITY_MEDIUM: Defaultbuild quality for most usages. Gives
a good compromise between build and render performance.

e RTC_BUILD_QUALITY_HIGH: Create higher quality data structures for final-
frame rendering. For certain geometry types this enables a spatial split
BVH. When high quality mode is enabled, filter callbacks may be invoked
multiple times for the same geometry.

Selecting a higher build quality results in better rendering performance but
slower scene commit times. The default build quality for a scene is RTC_BUILD_
QUALITY_MEDIUM.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO
rtcSetGeometryBuildQuality

Embree API Reference

77

725 rtcSetSceneFlags

NAME

rtcSetSceneFlags - sets the flags for the scene

SYNOPSIS

#include <embree4/rtcore.h>

enum RTCSceneFlags

{
RTC_SCENE_FLAG_NONE =0,
RTC_SCENE_FLAG_DYNAMIC = (1 << 0),
RTC_SCENE_FLAG_COMPACT = (1 << 1),
RTC_SCENE_FLAG_ROBUST = (1 << 2),

RTC_SCENE_FLAG_FILTER_FUNCTION_IN_ARGUMENTS = (1 << 3)
Y

void rtcSetSceneFlags(RTCScene scene, enum RTCSceneFlags flags);

DESCRIPTION

The rtcSetSceneFlags function sets the scene flags (flags argument) for the
specified scene (scene argument). Possible scene flags are:

e RTC_SCENE_FLAG_NONE: No flags set.

e RTC_SCENE_FLAG_DYNAMIC: Provides better build performance for dy-
namic scenes (but also higher memory consumption).

e RTC_SCENE_FLAG_COMPACT: Uses compact acceleration structures and avoids
algorithms that consume much memory.

* RTC_SCENE_FLAG_ROBUST: Uses acceleration structures that allow for ro-
bust traversal, and avoids optimizations that reduce arithmetic accuracy.
This mode is typically used for avoiding artifacts caused by rays shooting
through edges of neighboring primitives.

e RTC_SCENE_FLAG_FILTER_FUNCTION_IN_ARGUMENTS: Enables scene sup-
port for filter functions passed as argument to the traversal functions.
See Section rtcInitintersectArguments and rtcinitOccludedArguments for
more details.

Multiple flags can be enabled using an or operation, e.g. RTC_SCENE_FLAG_
COMPACT | RTC_SCENE_FLAG_ROBUST

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcGetSceneFlags

Embree API Reference

78

726 rtcGetSceneFlags

NAME

rtcGetSceneFlags - returns the flags of the scene

SYNOPSIS

#include <embree4/rtcore.h>

enum RTCSceneFlags rtcGetSceneFlags(RTCScene scene);

DESCRIPTION

Queries the flags of a scene. This function can be useful when setting individual
flags, e.g. to just set the robust mode without changing other flags the following
way:

RTCSceneFlags flags = rtcGetSceneFlags(scene);
rtcSetSceneFlags(scene, RTC_SCENE_FLAG_ROBUST | flags);

EXIT STATUS

On failure RTC_SCENE_FLAG_NONE is returned and an error code is set that can
be queried using rtcGetDeviceError.

SEE ALSO

rtcSetSceneFlags

Embree APl Reference 79

727 rtcGetSceneBounds

NAME

rtcGetSceneBounds - returns the axis-aligned bounding box of the scene

SYNOPSIS

#include <embree4/rtcore.h>

struct RTCORE_ALIGN(16) RTCBounds

{

float lower_x, lower_y, lower_z, alignO;
float upper_x, upper_y, upper_z, aligni;
I

void rtcGetSceneBounds(
RTCScene scene,
struct RTCBounds* bounds_o
);

DESCRIPTION

The rtcGetSceneBounds function queries the axis-aligned bounding box of the
specified scene (scene argument) and stores that bounding box to the provided
destination pointer (bounds_o argument). The stored bounding box consists
of lower and upper bounds for the x, y, and z dimensions as specified by the
RTCBounds structure.

The provided destination pointer must be aligned to 16 bytes. The function
may be invoked only after committing the scene; otherwise the result is unde-
fined.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetSceneLinearBounds, rtcCommitScene, rtcJoinCommitScene

Embree APl Reference 80

7.28 rtcGetScenelinearBounds

NAME

rtcGetScenelLinearBounds - returns the linear bounds of the scene

SYNOPSIS

#include <embree4/rtcore.h>

struct RTCORE_ALIGN(16) RTCLinearBounds
{

RTCBounds boundsO;

RTCBounds bounds1;

b

void rtcGetScenelLinearBounds(
RTCScene scene,
struct RTCLinearBounds* bounds_o

);

DESCRIPTION

The rtcGetSceneLinearBounds function queries the linear bounds of the speci-
fied scene (scene argument) and stores them to the provided destination pointer
(bounds_o argument). The stored linear bounds consist of bounding boxes for
time 0 (bounds0 member) and time 1 (bounds1 member) as specified by the RT-
CLinearBounds structure. Linearly interpolating these bounds to a specific time
t yields bounds for the geometry at that time.

The provided destination pointer must be aligned to 16 bytes. The function
may be called only after committing the scene, otherwise the result is undefined.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetSceneBounds, rtcCommitScene, rtcJoinCommitScene

Embree API Reference

RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE,RTC_GEOMETRY_TYPE_FLAT_HER-
MITE_CURVE,

RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE, RTC_GEOMETRY_TYPE_NOR-
MAL_ORIENTED_BEZIER_CURVE,RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_
CURVE, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE, RTC_GEOME-
TRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE, RTC_GEOMETRY_TYPE_CONE_
LINEAR_CURVE, RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE, RTC_GEOMETRY_
TYPE_ROUND_BEZIER_CURVE, RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE,RTC_
GEOMETRY_TYPE_ROUND_HERMITE_CURVE, RTC_GEOMETRY_TYPE_ROUND_CATMULL_
ROM_CURVE types) grid meshes (RTC_GEOMETRY_TYPE_GRID), point geometries
(RTC_GEOMETRY_TYPE_SPHERE_POINT,RTC_GEOMETRY_TYPE_DISC_POINT,RTC_
TYPE_ORIENTED_DISC_POINT), user-defined geometries (RTC_GEOMETRY_TYPE_
USER), instances (RTC_GEOMETRY_TYPE_INSTANCE), and instance arrays (RTC_
GEOMETRY_TYPE_INSTANCE_ARRAY).

The types RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE, RTC_GEOMETRY_TYPE_
ROUND_BSPLINE_CURVE,and RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE
will treat the curve as a sweep surface of a varying-radius circle swept tangen-
tially along the curve. The types RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE, and RTC_GEOMETRY_TYPE_FLAT_
CATMULL_ROM_CURVE use ray-facing ribbons as a faster-to-intersect approxima-
tion.

After construction, geometries are enabled by default and not attached to
any scene. Geometries can be disabled (rtcDisableGeometry call), and enabled
again (rtcEnableGeometry call). A geometry can be attached to multiple scenes
using the rtcAttachGeometry call (or rtcAttachGeometryByID call), and de-
tached using the rtcDetachGeometry call. During attachment, a geometry ID is
assigned to the geometry (or assigned by the user when using the rtcAttach-
GeometryByID call), which uniquely identifies the geometry inside that scene.
This identifier is returned when primitives of the geometry are hit in later ray
queries for the scene.

Geometries can also be modified, including their vertex and index buffers.
After modifying a buffer, rtcUpdateGeometryBuffer must be called to notify
that the buffer got modified.

The application can use the rtcSetGeometryUserData function to set a user
data pointer to its own geometry representation, and later read out this pointer
using the rtcGetGeometryUserData function.

After setting up the geometry or modifying it, rtcCommitGeometry must be
called to finish the geometry setup. After committing the geometry, vertex data
interpolation can be performed using the rtcInterpolate and rtcInterpo-
lateN functions.

A build quality can be specified for a geometry using the rtcSetGeometry-
BuildQuality function, to balance between acceleration structure build perfor-
mance and ray query performance. The build quality per geometry will be used if
a two-level acceleration structure is built internally, which is the case if the RTC_
BUILD_QUALITY_LOW is set as the scene build quality. See Section rtcSetSceneB-
uildQuality for more details.

EXIT STATUS
On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError

SEE ALSO

rtcEnableGeometry, rtcDisableGeometry, rtcAttachGeometry, rtcAttachGeom-
etryByID, rtcUpdateGeometryBuffer, rtcSetGeometryUserData, rtcGetGeome-
tryUserData, rtcCommitGeometry, rtcinterpolate, rtcinterpolateN, rtcSetGeome-

Embree API Reference

83

tryBuildQuality, rtcSetSceneBuildQuality, RTC_GEOMETRY_TYPE_TRIANGLE,
RTC_GEOMETRY_TYPE_QUAD,RTC_GEOMETRY_TYPE_SUBDIVISION,RTC_GEOMETRY_TYPE_CURVE,
RTC_GEOMETRY_TYPE_GRID,RTC_GEOMETRY_TYPE_POINT,RTC_GEOMETRY_TYPE_USER,
RTC_GEOMETRY_TYPE_INSTANCE,RTC_GEOMETRY_TYPE_INSTANCE_ARRAY

Embree API Reference

84

/730 RTC_GEOMETRY_TYPE_TRIANGLE

NAME

RTC_GEOMETRY_TYPE_TRIANGLE - triangle geometry type

SYNOPSIS

#include <embree4/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_TRIANGLE);

DESCRIPTION

Triangle meshes are created by passing RTC_GEOMETRY_TYPE_TRIANGLE to the
rtcNewGeometry function call. The triangle indices can be specified by set-
ting an index buffer (RTC_BUFFER_TYPE_INDEX type) and the triangle vertices
by setting a vertex buffer (RTC_BUFFER_TYPE_VERTEX type). See rtcSetGeome-
tryBuffer and rtcSetSharedGeometryBuffer for more details on how to set
buffers. The index buffer must contain an array of three 32-bit indices per trian-
gle (RTC_FORMAT_UINT3 format) and the number of primitives is inferred from
the size of that buffer. The vertex buffer must contain an array of single precision
X, y, z floating point coordinates (RTC_FORMAT_FLOAT3 format), and the number
of vertices are inferred from the size of that buffer. The vertex buffer can be at
most 16 GB large.

The parametrization of a triangle uses the first vertex p0 as base point, the
vector p1 - p0 as u-direction and the vector p2 - p0 as v-direction. Thus vertex
attributes t0, t1, t2 can be linearly interpolated over the triangle the following
way:

t_uv = (1-u-v)*t0 + u*t1 + v*t2
t0 + u*(t1-t0) + v*(t2-t0)

A triangle whose vertices are laid out counter-clockwise has its geometry
normal pointing upwards outside the front face, like illustrated in the following
picture:

p2

poO
For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for

Embree API Reference

85

each time step can be set using different buffer slots, and all these buffers have
to have the same stride and size.

Also see tutorial Triangle Geometry for an example of how to create triangle
meshes.
EXIT STATUS
On failure NULL is returned and an error code is set that be get queried using
rtcGetDeviceError.

SEE ALSO

rtcNewGeometry

Embree API Reference

86

/731 RTC_GEOMETRY_TYPE_QUAD

NAME

RTC_GEOMETRY_TYPE_QUAD - quad geometry type

SYNOPSIS

#include <embree4/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_QUAD);

DESCRIPTION

Quad meshes are created by passing RTC_GEOMETRY_TYPE_QUAD to the rtcNew-
Geometry function call. The quad indices can be specified by setting an index
buffer (RTC_BUFFER_TYPE_INDEX type) and the quad vertices by setting a ver-
tex buffer (RTC_BUFFER_TYPE_VERTEX type). See rtcSetGeometryBuffer and
rtcSetSharedGeometryBuffer for more details on how to set buffers. The in-
dex buffer contains an array of four 32-bit indices per quad (RTC_FORMAT_UINT4
format), and the number of primitives is inferred from the size of that buffer. The
vertex buffer contains an array of single precision x, y, z floating point coordi-
nates (RTC_FORMAT_FLOAT3 format), and the number of vertices is inferred from
the size of that buffer. The vertex buffer can be at most 16 GB large.

A quad isinternally handled as a pair of two triangles vo, v1,v3andv2,v3, v1
with the u'/v' coordinates of the second triangle corrected by u = 1-u' and
v = 1-v' to produce a quad parametrization where u and v are in the range 0
to 1. Thus the parametrization of a quad uses the first vertex p0 as base point,
and the vector p1 - p0 as u-direction, and p3 - p0 as v-direction. Thus vertex
attributes t0,t1,t2,t3 can be bilinearly interpolated over the quadrilateral the
following way:

t_uv = (1-v)((1-u)*t0 + u*t1) + v*((1-u)*t3 + u*t2)

Mixed triangle/quad meshes are supported by encoding a triangle as a quad,
which can be achieved by replicating the last triangle vertex (vO,v1,v2 ->
v0,v1,v2,v2). This way the second triangle is a line (which can never get
hit), and the parametrization of the first triangle is compatible with the standard
triangle parametrization.

A quad whose vertices are laid out counter-clockwise has its geometry nor-
mal pointing upwards outside the front face, like illustrated in the following pic-
ture.

Embree APl Reference 87

P2

Ng

Pl

PO

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for
each time step can be set using different buffer slots, and all these buffers must
have the same stride and size.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO

rtcNewGeometry

Embree API Reference

88

732 RTC_GEOMETRY_TYPE_GRID

NAME

RTC_GEOMETRY_TYPE_GRID - grid geometry type

SYNOPSIS

#include <embree4/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_GRID);

DESCRIPTION

Grid meshes are created by passing RTC_GEOMETRY_TYPE_GRID to the rtcNew-
Geometry function call, and contain an array of grid primitives. This array of
grids can be specified by setting up a grid buffer (with RTC_BUFFER_TYPE_GRID
type and RTC_FORMAT_GRID format) and the grid mesh vertices by setting a ver-
tex buffer (RTC_BUFFER_TYPE_VERTEX type). See rtcSetGeometryBuffer and
rtcSetSharedGeometryBuffer for more details on how to set buffers. The num-
ber of grid primitives in the grid mesh is inferred from the size of the grid buffer.

The vertex buffer contains an array of single precision x, y, z floating point
coordinates (RTC_FORMAT_FLOAT3 format), and the number of vertices is inferred
from the size of that buffer.

Each grid in the grid buffer is of the type RTCGrid:

struct RTCGrid

{

unsigned int startVertexID;
unsigned int stride;
unsigned short width,height;
I

The RTCGrid structure describes a 2D grid of vertices (with respect to the
vertex buffer of the grid mesh). The width and height members specify the
number of vertices in u and v direction, e.g. setting both width and height to 3
sets up a 3x3 vertex grid. The maximum allowedwidth and height is 32767. The
startVertexID specifies the ID of the top-left vertex in the vertex grid, while
the stride parameter specifies a stride (in number of vertices) used to step to
the next row.

A vertex grid of dimensions width and height is treated as a (width-1) X
(height-1) grid of quads (triangle-pairs), with the same shared edge handling
as for regular quad meshes. However, the u/v coordinates have the uniform range
[0..1] for an entire vertex grid. The u direction follows the width of the grid
while the v direction the height.

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for
each time step can be set using different buffer slots, and all these buffers must
have the same stride and size.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError

SEE ALSO

rtcNewGeometry

Embree API Reference

733 RTC_GEOMETRY_TYPE_SUBDIVISION

NAME

RTC_GEOMETRY_TYPE_SUBDIVISION - subdivision geometry type

SYNOPSIS

#include <embree4/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_SUBDIVISION);

DESCRIPTION

Catmull-Clark subdivision meshes are supported, including support for edge
creases, vertex creases, holes, non-manifold geometry, and face-varying inter-
polation. The number of vertices per face can be in the range of 3 to 15 vertices
(triangles, quadrilateral, pentagons, etc).

Subdivision meshes are created by passing RTC_GEOMETRY_TYPE_SUBDIVI-
SION to the rtcNewGeometry function. Various buffers need to be set by the
application to set up the subdivision mesh. See rtcSetGeometryBuffer and
rtcSetSharedGeometryBuffer for more details on how to set buffers. The face
buffer (RTC_BUFFER_TYPE_FACE type and RTC_FORMAT_UINT format) contains
the number of edges/indices of each face (3 to 15), and the number of faces is
inferred from the size of this buffer. The index buffer (RTC_BUFFER_TYPE_IN-
DEX type) contains multiple (3 to 15) 32-bit vertex indices (RTC_FORMAT_UINT
format) for each face, and the number of edges is inferred from the size of this
buffer. The vertex buffer (RTC_BUFFER_TYPE_VERTEX type) stores an array of
single precision x, y, z floating point coordinates (RTC_FORMAT_FLOAT3 format),
and the number of vertices is inferred from the size of this buffer.

Optionally, the application may set additional index buffers using different
buffer slots if multiple topologies are required for face-varying interpolation. The
standard vertex buffers (RTC_BUFFER_TYPE_VERTEX) are always bound to the ge-
ometry topology (topology 0) thus use RTC_BUFFER_TYPE_INDEX with buffer slot
0. User vertex data interpolation may use different topologies as described later.

Optionally, the application can set up the hole buffer (RTC_BUFFER_TYPE_
HOLE) which contains an array of 32-bit indices (RTC_FORMAT_UINT format) of
faces that should be considered non-existing in all topologies. The number of
holes is inferred from the size of this buffer.

Optionally, the application can fill the level buffer (RTC_BUFFER_TYPE_LEVEL)
with a tessellation rate for each of the edges of each face. This buffer must have
the same size as the index buffer. The tessellation level is a positive floating
point value (RTC_FORMAT_FLOAT format) that specifies how many quads along
the edge should be generated during tessellation. If no level buffer is specified, a
level of 1 is used. The maximally supported edge level is 4096, and larger levels
are clamped to that value. Note that edges may be shared between (typically
2) faces. To guarantee a watertight tessellation, the level of these shared edges
should be identical. A uniform tessellation rate for an entire subdivision mesh
can be set by using the rtcSetGeometryTessellationRate function. The exis-
tence of a level buffer has precedence over the uniform tessellation rate.

Optionally, the application can fill the sparse edge crease buffers to make
edges appear sharper. The edge crease index buffer (RTC_BUFFER_TYPE_EDGE_
CREASE_INDEX) contains an array of pairs of 32-bit vertex indices (RTC_FOR-
MAT_UINT2 format) that specify unoriented edges in the geometry topology. The
edge crease weight buffer (RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT) stores for
each of these crease edges a positive floating point weight (RTC_FORMAT_FLOAT

Embree API Reference

90

format). The number of edge creases is inferred from the size of these buffers,
which has to be identical. The larger a weight, the sharper the edge. Specifyinga
weight of infinity is supported and marks an edge as infinitely sharp. Storing an
edge multiple times with the same crease weight is allowed, but has lower per-
formance. Storing an edge multiple times with different crease weights results
in undefined behavior. For a stored edge (i,j), the reverse direction edges (j,i) do
not have to be stored, as both are considered the same unoriented edge. Edge
crease features are shared between all topologies.

Optionally, the application can fill the sparse vertex crease buffers to make
vertices appear sharper. The vertex crease index buffer (RTC_BUFFER_TYPE_
VERTEX_CREASE_INDEX), contains an array of 32-bit vertex indices (RTC_FOR-
MAT_UINT format) to specify a set of vertices from the geometry topology. The
vertex crease weight buffer (RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT) spec-
ifies for each of these vertices a positive floating point weight (RTC_FORMAT_
FLOAT format). The number of vertex creases is inferred from the size of these
buffers, and has to be identical. The larger a weight, the sharper the vertex. Spec-
ifying a weight of infinity is supported and makes the vertex infinitely sharp.
Storing a vertex multiple times with the same crease weight is allowed, but has
lower performance. Storing a vertex multiple times with different crease weights
results in undefined behavior. Vertex crease features are shared between all
topologies.

Subdivision modes can be used to force linear interpolation for parts of the
subdivision mesh; see rtcSetGeometrySubdivisionMode for more details.

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for
each time step can be set using different buffer slots, and all these buffers have
to have the same stride and size.

Also see tutorial Subdivision Geometry for an example of how to create sub-
division surfaces.

Parametrization

The parametrization for subdivision faces is different for quadrilaterals and non-
quadrilateral faces.

The parametrization of a quadrilateral face uses the first vertex p0 as base
point, and the vector p1 - p0 as u-direction and p3 - p0 as v-direction.

The parametrization for all other face types (with number of vertices not
equal 4), have a special parametrization where the subpatch ID n (of the n-th
quadrilateral that would be obtained by a single subdivision step) and the local
hit location inside this quadrilateral are encoded in the UV coordinates. The
following code extracts the sub-patch ID i and local UVs of this subpatch:

unsigned int 1 = floorf(0.5f*U);
unsigned int h = floorf(0.5f*V);
unsigned int i = 4*h+1;

float u = 2.0f*fracf(0.5f*U)-0.5F;
float v = 2.0f*fracf(0.5f*V)-0.5f;

This encoding allows local subpatch UVs to be in the range [-0.5,1.5[thus
negative subpatch UVs can be passed to rtcInterpolate to sample subpatches
slightly out of bounds. This can be useful to calculate derivatives using finite
differences if required. The encoding further has the property that one can just
move the value u (or v) on a subpatch by adding du (or dv) to the special UV
encoding as long as it does not fall out of the [-0.5,1.5[range.

To smoothly interpolate vertex attributes over the subdivision surface we
recommend using the rtcInterpolate function, which will apply the standard
subdivision rules for interpolation and automatically takes care of the special UV
encoding for non-quadrilaterals.

Embree API Reference

91

Face-Varying Data

Face-varying interpolation is supported through multiple topologies per subdi-
vision mesh and binding such topologies to vertex attribute buffers to interpo-
late. This way, texture coordinates may use a different topology with additional
boundaries to construct separate UV regions inside one subdivision mesh.

Each such topology i has a separate index buffer (specified using RTC_
BUFFER_TYPE_INDEX with buffer slot i) and separate subdivision mode that can
be set using rtcSetGeometrySubdivisionMode. A vertex attribute buffer RTC_
BUFFER_TYPE_VERTEX_ATTRIBUTE bound to a buffer slot j can be assigned to
use a topology for interpolation using the rtcSetGeometryVertexAttribute-
Topology call.

The face buffer (RTC_BUFFER_TYPE_FACE type) is shared between all topolo-
gies, which means that the n-th primitive always has the same number of vertices
(e.0. being a triangle or a quad) for each topology. However, the indices of the
topologies themselves may be different.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEEALSO

rtcNewGeometry

Embree API Reference

92

734 RTC_GEOMETRY_TYPE_CURVE

NAME
RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE -

flat curve geometry with linear basis

RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE -
flat curve geometry with cubic Bézier basis

RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE -
flat curve geometry with cubic B-spline basis

RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE -
flat curve geometry with cubic Hermite basis

RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE -
flat curve geometry with Catmull-Rom basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE -
flat normal oriented curve geometry with cubic Bézier basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE -
flat normal oriented curve geometry with cubic B-spline basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE -
flat normal oriented curve geometry with cubic Hermite basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_ CATMULL_ROM_CURVE -
flat normal oriented curve geometry with Catmull-Rom basis

RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE -
capped cone curve geometry with linear basis - discontinuous at edge boundaries

RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE -
capped cone curve geometry with linear basis and spherical ending

RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE -
swept surface curve geometry with cubic Bézier basis

RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE -
swept surface curve geometry with cubic B-spline basis

RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE -
swept surface curve geometry with cubic Hermite basis

RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE -
swept surface curve geometry with Catmull-Rom basis

SYNOPSIS

#include <embree4/rtcore.h>

rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE);

Embree API Reference

rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE);

DESCRIPTION

Curves with per vertex radii are supported with linear, cubic Bézier, cubic B-
spling, and cubic Hermite bases. Such curve geometries are created by pass-
ing RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE, RTC_GEOMETRY_TYPE_FLAT_
BEZIER_CURVE, RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE, RTC_GEOMETRY_
TYPE_FLAT_HERMITE_CURVE,RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_BEZIER_CURVE, RTC_GEOMETRY_
TYPE_NORMAL_ORIENTED_FLAT_BSPLINE_CURVE, RTC_GEOMETRY_TYPE_NORMAL_
ORIENTED_FLAT_HERMITE_CURVE,RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_
CATMULL_ROM_CURVE, RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE, RTC_GEOME-
TRY_TYPE_ROUND_LINEAR_CURVE,RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE
RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE, RTC_GEOMETRY_TYPE_ROUND_HER-
MITE_CURVE, or RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE to the rtc-
NewGeometry function. The curve indices can be specified through an index
buffer (RTC_BUFFER_TYPE_INDEX) and the curve vertices through a vertex buffer
(RTC_BUFFER_TYPE_VERTEX). For the Hermite basis a tangent buffer (RTC_BUFFER_
TYPE_TANGENT), normal oriented curves a normal buffer (RTC_BUFFER_TYPE_
NORMAL), and for normal oriented Hermite curves a normal derivative buffer
(RTC_BUFFER_TYPE_NORMAL_DERIVATIVE) has to get specified additionally. See
rtcSetGeometryBuffer and rtcSetSharedGeometryBuffer for more details
on how to set buffers.

The index buffer contains an array of 32-bit indices (RTC_FORMAT_UINT for-
mat), each pointing to the first control vertex in the vertex buffer, but also to the
first tangent in the tangent buffer, and first normal in the normal buffer if these
buffers are present.

The vertex buffer stores each control vertex in the form of a single precision
position and radius stored in (x, y, z, r) order in memory (RTC_FORMAT_FLOAT4
format). The number of vertices is inferred from the size of this buffer. The radii
may be smaller than zero but the interpolated radii should always be greater or
equal to zero. Similarly, the tangent buffer stores the derivative of each control
vertex (x, y, z, r order and RTC_FORMAT_FLOAT4 format) and the normal buffer
stores a single precision normal per control vertex (x, y, z order and RTC_FOR-
MAT_FLOAT3 format).

Linear Basis For the linear basis the indices point to the first of 2 consecutive
control points in the vertex buffer. The first control point is the start and the
second control point the end of the line segment. When constructing hair strands
in this basis, the end-point can be shared with the start of the next line segment.

For the linear basis the user optionally can provide a flags buffer of type RTC_
BUFFER_TYPE_FLAGS which contains bytes that encode if the left neighbor seg-
ment (RTC_CURVE_FLAG_NEIGHBOR_LEFT flag) and/or right neighbor segment
(RTC_CURVE_FLAG_NEIGHBOR_RIGHT flags) exist (see RTCCurveFlags). If this
buffer is not set, than the left/right neighbor bits are automatically calculated

Embree API Reference

94

base on the index buffer (left segment exists if segment(id-1)+1 == segment(id)
and right segment exists if segment(id+1)-1 == segment(id)).

A left neighbor segment is assumed to end at the start vertex of the current
segment, and to start at the previous vertex in the vertex buffer. Similarly, the
right neighbor segment is assumed to start at the end vertex of the current seg-
ment, and to end at the next vertex in the vertex buffer.

Only when the left and right bits are properly specified the current segment
can properly attach to the left and/or right neighbor, otherwise the touching area
may not get rendered properly.

Bézier Basis For the cubic Bézier basis the indices point to the first of 4 con-
secutive control points in the vertex buffer. These control points use the cubic
Bézier basis, where the first control point represents the start point of the curve,
and the 4th control point the end point of the curve. The Bézier basis is interpo-
lating, thus the curve does go exactly through the first and fourth control vertex.

B-spline Basis For the cubic B-spline basis the indices point to the first of
4 consecutive control points in the vertex buffer. These control points make
up a cardinal cubic B-spline (implicit equidistant knot vector). This basis is not
interpolating, thus the curve does in general not go through any of the control
points directly. A bigadvantage of this basis is that 3 control points can be shared
for two continuous neighboring curve segments, e.g. the curves (p0,p1,p2,p3) and
(p1,p2,p3,p4) are C1 continuous. This feature makes this basis a good choice
to construct continuous multi-segment curves, as memory consumption can be
kept minimal.

Hermite Basis For the cubic Hermite basis the indices point to the first of 2
consecutive points in the vertex buffer, and the first of 2 consecutive tangents in
the tangent buffer. These two points and two tangents make up a cubic Hermite
curve. This basis is interpolating, thus does exactly go through the first and
second control point, and the first order derivative at the begin and end matches
exactly the value specified in the tangent buffer. When connecting two segments
continuously, the end point and tangent of the previous segment can be shared.
Different versions of Catmull-Rom splines can be easily constructed using the
Hermite basis, by calculating a proper tangent buffer from the control points.

Catmull-Rom Basis For the Catmull-Rom basis the indices point to the first
of 4 consecutive control points in the vertex buffer. This basis goes through pl
and p2, with tangents (p2-p0)/2 and (p3-pl)/2.

Flat Curves The RTC_GEOMETRY_TYPE_FLAT_* flat mode is a fast mode de-
signed to render distant hair. In this mode the curve is rendered as a connected
sequence of ray facing quads. Individual quads are considered to have subpixel
size, and zooming onto the curve might show geometric artifacts. The number
of quads to subdivide into can be specified through the rtcSetGeometryTes-
sellationRate function. By default the tessellation rate is 4.

Normal Oriented Curves The RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_* mode

is a mode designed to render blades of grass. In this mode a vertex spline has
to get specified as for the previous modes, but additionally a normal spline is
required. If the Hermite basis is used, the RTC_BUFFER_TYPE_NORMAL and RTC_
BUFFER_TYPE_NORMAL_DERIVATIVE buffers have both to be set.

The curve is rendered as a flat band whose center approximately follows the
provided vertex spline, whose half width approximately follows the provided

Embree API Reference

95

radius spline, and whose normal orientation approximately follows the provided
normal spline.

To intersect the normal oriented curve, we perform a newton-raphson style
intersection of a ray with a tensor product surface of a linear basis (perpendicular
to the curve) and cubic Bézier basis (along the curve). We use a guide curve and
its derivatives to construct the control points of that surface. The guide curve
is defined by a sweep surface defined by sweeping a line centered at the vertex
spline location along the curve. At each parameter value the half width of the
line matches the radius spline, and the direction matches the cross product of
the normal from the normal spline and tangent of the vertex spline. Note that
this construction does not work when the provided normals are parallel to the
curve direction. For this reason the provided normals should best be kept as
perpendicular to the curve direction as possible. We further assume second order
derivatives of the center curve to be zero for this construction, as otherwise very
large curvatures occurring in corner cases, can thicken the constructed curve
significantly.

Round Curves In the RTC_GEOMETRY_TYPE_ROUND_* round mode, a real ge-
ometric surface is rendered for the curve, which is more expensive but allows
closeup views.

For the linear basis the round mode renders a cone that tangentially touches
a start-sphere and end-sphere. The start sphere is rendered when no previous
segments is indicated by the neighbor bits. The end sphere is always rendered
but parts that lie inside the next segment are clipped away (if that next segment
exists). This way a curve is closed on both ends and the interior will render
properly as long as only neighboring segments penetrate into a segment. For
this to work properly it is important that the flags buffer is properly populated
with neighbor information.

For the cubic polynomial bases, the round mode renders a sweep surface by
sweeping a varying radius circle tangential along the curve. As a limitation, the
radius of the curve has to be smaller than the curvature radius of the curve at
each location on the curve.

The intersection with the curve segment stores the parametric hit location
along the curve segment as u-coordinate (range 0 to +1).

For flat curves, the v-coordinate is set to the normalized distance in the range
-1 to +1. For normal oriented curves the v-coordinate is in the range 0 to 1. For
the linear basis and in round mode the v-coordinate is set to zero.

In flat mode, the geometry normal Ng is set to the tangent of the curve at
the hit location. In round mode and for normal oriented curves, the geometry
normal Ng is set to the non-normalized geometric normal of the surface.

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for
each time step can be set using different buffer slots, and all these buffers must
have the same stride and size. For the Hermite basis also a tangent buffer has to
be set for each time step and for normal oriented curves a normal buffer has to
get specified for each time step.

Also see tutorials Hair and Curves for examples of how to create and use
curve geometries.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO
rtcNewGeometry, RTCCurveFlags

Embree API Reference

735 RTC_GEOMETRY_TYPE_POINT

NAME

RTC_GEOMETRY_TYPE_SPHERE_POINT -
point geometry spheres

RTC_GEOMETRY_TYPE_DISC_POINT -
point geometry with ray-oriented discs

RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT -
point geometry with normal-oriented discs

SYNOPSIS

#include <embree4/rtcore.h>

rtcNewGeometry(device, RTC_GEOMETRY_TYPE_SPHERE_POINT);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_DISC_POINT);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT);

DESCRIPTION

Points with per vertex radii are supported with sphere, ray-oriented discs, and
normal-oriented discs geometric representations. Such point geometries are
created by passing RTC_GEOMETRY_TYPE_SPHERE_POINT, RTC_GEOMETRY_TYPE_
DISC_POINT, or RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT to the rtcNew-
Geometry function. The point vertices can be specified t through a vertex buffer
(RTC_BUFFER_TYPE_VERTEX). For the normal oriented discs a normal buffer
(RTC_BUFFER_TYPE_NORMAL) has to get specified additionally. See rtcSetGe-
ometryBuffer and rtcSetSharedGeometryBuffer for more details on how to
set buffers.

The vertex buffer stores each control vertex in the form of a single precision
position and radius stored in (x, y, z, r) order in memory (RTC_FORMAT_FLOAT4
format). The number of vertices is inferred from the size of this buffer. Similarly,
the normal buffer stores a single precision normal per control vertex (x, y, z order
and RTC_FORMAT_FLOAT3 format).

In the RTC_GEOMETRY_TYPE_SPHERE_POINT mode, a real geometric surface
is rendered for the curve, which is more expensive but allows closeup views.

The RTC_GEOMETRY_TYPE_DISC_POINT flat mode is a fast mode designed to
render distant points. In this mode the point is rendered as a ray facing disc.

The RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT mode is a mode designed
as a midpoint geometrically between ray facing discs and spheres. In this mode
the point is rendered as a normal oriented disc.

For all point types, only the hit distance and geometry normal is returned as
hit information, u and v are set to zero.

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for
each time step can be set using different buffer slots, and all these buffers must
have the same stride and size.

Also see tutorial [Points] for an example of how to create and use point ge-
ometries.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError

Embree API Reference

97

SEEALSO

rtcNewGeometry

Embree API Reference

98

736 RTC_GEOMETRY_TYPE_USER

NAME

RTC_GEOMETRY_TYPE_USER - user geometry type

SYNOPSIS

#include <embree4/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_USER);

DESCRIPTION

User-defined geometries contain a number of user-defined primitives, just like
triangle meshes contain multiple triangles. The shape of the user-defined primi-
tives is specified through registered callback functions, which enable extending
Embree with arbitrary types of primitives.

User-defined geometries are created by passing RTC_GEOMETRY_TYPE_USER
to the rtcNewGeometry function call. One has to set the number of prim-
itives (see rtcSetGeometryUserPrimitiveCount), a user data pointer (see
rtcSetGeometryUserData), a bounding function closure (see rtcSetGeome-
tryBoundsFunction), as well as user-defined intersect (see rtcSetGeometry-
IntersectFunction) and occluded (see rtcSetGeometryOccludedFunction)
callback functions. The bounding function is used to query the bounds of all
time steps of a user primitive, while the intersect and occluded callback func-
tions are called to intersect the primitive with a ray. The user data pointer is
passed to each callback invocation and can be used to point to the application’s
representation of the user geometry.

The creation of a user geometry typically looks the following:

RTCGeometry geometry = rtcNewGeometry(device, RTC_GEOMETRY_TYPE_USER);
rtcSetGeometryUserPrimitiveCount(geometry, numPrimitives);
rtcSetGeometryUserData(geometry, userGeometryRepresentation);
rtcSetGeometryBoundsFunction(geometry, boundsFunction);
rtcSetGeometryIntersectFunction(geometry, intersectFunction);
rtcSetGeometryOccludedFunction(geometry, occludedFunction);

Please have a look at the rtcSetGeometryBoundsFunction, rtcSetGeom-
etryIntersectFunction, and rtcSetGeometryOccludedFunction functions
on the implementation of the callback functions.

Primitives of a user geometry are ignored during rendering when their
bounds are empty, thus bounds have lower>upper in at least one dimension.

See tutorial User Geometry for an example of how to use the user-defined
geometries.

EXIT STATUS
On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError

SEE ALSO

rtcNewGeometry, rtcSetGeometryUserPrimitiveCount, rtcSetGeometryUserData,
rtcSetGeometryBoundsFunction, rtcSetGeometrylntersectFunction, rtcSetGeom-
etryOccludedFunction

Embree API Reference

99

737 RTC_GEOMETRY_TYPE_INSTANCE

NAME

RTC_GEOMETRY_TYPE_INSTANCE - instance geometry type

SYNOPSIS

#include <embree4/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_INSTANCE);

DESCRIPTION

Embree supports instancing of scenes using affine transformations (3x3 matrix
plus translation). As the instanced scene is stored only a single time, even if
instanced to multiple locations, this feature can be used to create very complex
scenes with small memory footprint.

Embree supports both single-level instancing and multi-level instancing. The
maximum instance nesting depth is RTC_MAX_INSTANCE_LEVEL_COUNT; it can be
configured at compile-time using the constant EMBREE_MAX_INSTANCE_LEVEL_
COUNT. Users should adapt this constant to their needs: instances nested any
deeper are silently ignored in release mode, and cause assertions in debug mode.

Instances are created by passing RTC_GEOMETRY_TYPE_INSTANCE to the rtc-
NewGeometry function call. The instanced scene can be set using the rtcSet-
GeometryInstancedScene call, and the affine transformation can be set using
the rtcSetGeometryTransform function.

Please note that rtcCommitScene on the instanced scene should be called
first, followed by rtcCommitGeometry on the instance, followed by rtcCom-
mitScene for the top-level scene containing the instance.

If a ray hits the instance, the geomID and primID members of the hit are set
to the geometry ID and primitive ID of the hit primitive in the instanced scene,
and the instID member of the hit is set to the geometry ID of the instance in
the top-level scene.

The instancing scheme can also be implemented using user geometries. To
achieve this, the user geometry code should set the instID member of the ray
query context to the geometry ID of the instance, then trace the transformed ray,
and finally set the instID field of the ray query context again to -1. The instID
field is copied automatically by each primitive intersector into the instID field
of the hit structure when the primitive is hit. See the User Geometry tutorial for
an example.

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount function. Then a transforma-
tion for each time step can be specified using the rtcSetGeometryTransform
function.

See tutorials Instanced Geometry and Multi Level Instancing for examples of
how to use instances.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcSetGeometrylnstancedScene, rtcSetGeometryTransform

Embree API Reference 100

738 RTC_GEOMETRY_TYPE_INSTANCE_ARRAY

NAME

RTC_GEOMETRY_TYPE_INSTANCE_ARRAY - instance array geometry type

SYNOPSIS

#include <embree4/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_INSTANCE_ARRAY);

DESCRIPTION

Embree supports instance arrays, which is a more memory efficient way to rep-
resent large amounts of instances of the same or a small set of (sub)scenes. The
main difference to regular Embree instances is that Embree instance arrays have
a buffer of transformations (either affine transformations or quaternion decom-
positions RTCQuaternionDecomposition) that can be allocated by Embree or a
shared buffer, similar to vertex buffers for triangle meshes. Optionally, instead
of instancing only one scene, an instance array can instance multiple scenes by
passing an array of scenes and a corresponding index buffer that specifies which
instance of the instance array instances which of the scenes in the scenes array.

Instance arrays are created by passing RTC_GEOMETRY_TYPE_INSTANCE_AR-
RAY to the rtcNewGeometry function call. The instanced scene can be either be
set usingthe rtcSetGeometryInstancedScene call, or if multiple scenes should
be instanced by passing an array of scenes using rtcSetGeometryInstanced-
Scenes. The latter also requires to specify an index buffer using rtcSetNew-
GeometryBuffer or rtcSetSharedGeometryBuffer with RTC_BUFFER_TYPE_
INDEX as the buffer type.

Because the transformation information can become large for a large amount
of instances, the instance array allows to share the transformation buffer be-
tween the user application and Embree. It can be either stored in a buffer
created by Embree with rtcSetNewGeometryBuffer or an already existing
buffer can be shared using rtcSetSharedGeometryBuffer. In either case, the
buffer type has to be RTC_BUFFER_TYPE_TRANSFORM and the allowed formats are
RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR, RTC_FORMAT_FLOAT3X4_COLUMN_MA-
JOR, RTC_FORMAT_FLOAT3X4_ROW_MAJOR, and RTC_FORMAT_QUATERNION_DE-
COMPOSITION. Embree will not modify the data in the transformation buffer.

Embree instance arrays support both single-level instancing and multi-level
instancing. The maximum instance nesting depth is RTC_MAX_INSTANCE_LEVEL_
COUNT; it can be configured at compile-time using the constant EMBREE_MAX_IN-
STANCE_LEVEL_COUNT. Users should adapt this constant to their needs: instances
nested any deeper are silently ignored in release mode, and cause assertions in
debug mode.

Please note that rtcCommitScene on the instanced scene(s) should be called
first, followed by rtcCommitGeometry on the instance array, followed by rtc-
CommitScene for the top-level scene containing the instance array.

If a ray hits the instance, the geomID and primID members of the hit are set
to the geometry ID and primitive ID of the hit primitive in the instanced scene.
The instID member of the hit is set to the geometry ID of the instance array
in the top-level scene and the instPrimID member is set to the index of the hit
instance of the instance array.

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount function. Then a transforma-
tion for each time step can be specified using the rtcSetNewGeometryBuffer or

Embree API Reference 101

rtcSetSharedGeometryBuffer function and passing the time step as the slot
parameter of these calls.

See the Instance Array Geometry tutorial for an example of how to use in-
stance arrays.

EXIT STATUS
On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcSetGeometrylnstancedScene, rtcSetGeometrylnstancedScenes,
rtcSetNewGeometryBuffer, rtcSetSharedGeometryBuffer, rtcGetGeometryTrans-
formEx

Embree API Reference 102

7.39 RTCCurveFlags

NAME

RTCCurveFlags - per segment flags for curve geometry

SYNOPSIS

#include <embree4/rtcore.h>

enum RTCCurveFlags

{

RTC_CURVE_FLAG_NEIGHBOR_LEFT = (1 << 0),
RTC_CURVE_FLAG_NEIGHBOR_RIGHT = (1 << 1)
Y
DESCRIPTION

The RTCCurveFlags type is used for linear curves to determine if the left and/or
right neighbor segment exist. Therefore one attaches a buffer of type RTC_BUFFER_TYPE_FLAGS
to the curve geometry which stores an individual byte per curve segment.

If the RTC_CURVE_FLAG_NEIGHBOR_LEFT flag in that byte is enabled for
a curve segment, then the left segment exists (which starts one vertex before the
start vertex of the current curve) and the current segment is rendered to properly
attach to that segment.

If the RTC_CURVE_FLAG_NEIGHBOR_RIGHT flag in that byte is enabled
for a curve segment, then the right segment exists (which ends one vertex af-
ter the end vertex of the current curve) and the current segment is rendered to
properly attach to that segment.

When not properly specifying left and right flags for linear curves, the ren-
dering at the ending of these curves may not look correct, in particular when
round linear curves are viewed from the inside.

EXIT STATUS
SEE ALSO
RTC_GEOMETRY_TYPE_CURVE

Embree API Reference 103

740 rtcRetainGeometry

NAME

rtcRetainGeometry - increments the geometry reference count

SYNOPSIS

#include <embree4/rtcore.h>

void rtcRetainGeometry(RTCGeometry geometry);

DESCRIPTION

Geometry objects are reference counted. The rtcRetainGeometry function in-
crements the reference count of the passed geometry object (geometry argu-
ment). This function together with rtcReleaseGeometry allows to use the in-
ternal reference counting in a C++ wrapper class to handle the ownership of the
object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewGeometry, rtcReleaseGeometry

Embree API Reference

104

741 rtcReleaseGeometry

NAME

rtcReleaseGeometry - decrements the geometry reference count

SYNOPSIS

#include <embree4/rtcore.h>

void rtcReleaseGeometry(RTCGeometry geometry);

DESCRIPTION

Geometry objects are reference counted. The rtcReleaseGeometry function
decrements the reference count of the passed geometry object (geometry argu-
ment). When the reference count falls to 0, the geometry gets destroyed.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcRetainGeometry

Embree API Reference 105

742 rtcCommitGeometry

NAME

rtcCommitGeometry - commits geometry changes

SYNOPSIS

#include <embree4/rtcore.h>

void rtcCommitGeometry(RTCGeometry geometry);

DESCRIPTION

The rtcCommitGeometry function is used to commit all geometry changes per-
formed to a geometry (geometry parameter). After a geometry gets modified,
this function must be called to properly update the internal state of the geometry
to perform interpolations using rtcInterpolate or to commit a scene contain-
ing the geometry using rtcCommitScene.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcinterpolate, rtcCommitScene

Embree API Reference 106

743 rtcEnableGeometry

NAME

rtcEnableGeometry - enables the geometry

SYNOPSIS

#include <embree4/rtcore.h>

void rtcEnableGeometry(RTCGeometry geometry);

DESCRIPTION

The rtcEnableGeometry function enables the specified geometry (geometry
argument). Only enabled geometries are rendered. Each geometry is enabled by
default at construction time.

After enabling a geometry, the scene containing that geometry must be com-
mitted using rtcCommitScene for the change to have effect.
EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewGeometry, rtcDisableGeometry, rtcCommitScene

Embree API Reference 107

744 rtcDisableGeometry

NAME

rtcDisableGeometry - disables the geometry

SYNOPSIS

#include <embree4/rtcore.h>

void rtcDisableGeometry(RTCGeometry geometry);

DESCRIPTION

The rtcDisableGeometry function disables the specified geometry (geometry
argument). A disabled geometry is not rendered. Each geometry is enabled by
default at construction time.

After disabling a geometry, the scene containing that geometry must be com-
mitted using rtcCommitScene for the change to have effect.
EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEEALSO

rtcNewGeometry, rtcEnableGeometry, rtcCommitScene

Embree API Reference 108

745 rtcSetGeometryTimeStepCount

NAME

rtcSetGeometryTimeStepCount - sets the number of time steps of the
geometry

SYNOPSIS

#include <embree4/rtcore.h>

void rtcSetGeometryTimeStepCount(
RTCGeometry geometry,
unsigned int timeStepCount

),

DESCRIPTION

The rtcSetGeometryTimeStepCount function sets the number of time steps for
multi-segment motion blur (timeStepCount parameter) of the specified geome-
try (geometry parameter).

For triangle meshes (RTC_GEOMETRY_TYPE_TRIANGLE), quad meshes (RTC_
GEOMETRY_TYPE_QUAD), curves (RTC_GEOMETRY_TYPE_CURVE), points (RTC_GE-
OMETRY_TYPE_POINT), and subdivision geometries (RTC_GEOMETRY_TYPE_SUB-
DIVISION), the number of time steps directly corresponds to the number of ver-
tex buffer slots available (RTC_BUFFER_TYPE_VERTEX buffer type). For these ge-
ometries, one vertex buffer per time step must be specified when creating multi-
segment motion blur geometries.

For instance geometries (RTC_GEOMETRY_TYPE_INSTANCE), a transformation
must be specified for each time step (see rtcSetGeometryTransform).

For user geometries, the registered bounding callback function must provide
a bounding box per primitive and time step, and the intersection and occlusion
callback functions should properly intersect the motion-blurred geometry at the
ray time.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcSetGeometryTimeRange

Embree API Reference 109

746 rtcSetGeometryTimeRange

NAME

rtcSetGeometryTimeRange - sets the time range for a motion blur geometry

SYNOPSIS

#include <embree4/rtcore.h>

void rtcSetGeometryTimeRange(
RTCGeometry geometry,
float startTime,
float endTime

)

DESCRIPTION

The rtcSetGeometryTimeRange function sets a time range which defines the
start (and end time) of the first (and last) time step of a motion blur geometry.
The time range is defined relative to the camera shutter interval [0,1] but it can
be arbitrary. Thus the startTime can be smaller, equal, or larger 0, indicating a
geometry whose animation definition start before, at, or after the camera shutter
opens. Similar the endTime can be smaller, equal, or larger than 1, indicating a
geometry whose animation definition ends after, at, or before the camera shutter
closes. The startTime has to be smaller or equal to the endTime.

The default time range when this function is not called is the entire camera
shutter [0,1]. For best performance at most one time segment of the piece wise
linear definition of the motion should fall outside the shutter window to the left
and to the right. Thus do not set the startTime or endTime too far outside the
[0,1] interval for best performance.

This time range feature will also allow geometries to appear and disappear
during the camera shutter time if the specified time range is a sub range of [0,1].

Please also have a look at the rtcSetGeometryTimeStepCount function to
see how to define the time steps for the specified time range.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO
rtcSetGeometryTimeStepCount

Embree API Reference 110

747 rtcSetGeometryVertexAttributeCount

NAME

rtcSetGeometryVertexAttributeCount - sets the number of vertex
attributes of the geometry

SYNOPSIS

#include <embree4/rtcore.h>

void rtcSetGeometryVertexAttributeCount(
RTCGeometry geometry,
unsigned int vertexAttributeCount

)

DESCRIPTION

The rtcSetGeometryVertexAttributeCount function sets the number of slots
(vertexAttributeCount parameter) for vertex attribute buffers (RTC_BUFFER_
TYPE_VERTEX_ATTRIBUTE) that can be used for the specified geometry (geome-
try parameter).

This function is supported only for triangle meshes (RTC_GEOMETRY_TYPE_
TRIANGLE), quad meshes (RTC_GEOMETRY_TYPE_QUAD), curves (RTC_GEOMETRY_
TYPE_CURVE), points (RTC_GEOMETRY_TYPE_POINT), and subdivision geometries
(RTC_GEOMETRY_TYPE_SUBDIVISION).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO
rtcNewGeometry, RTCBufferType

Embree API Reference m

748 rtcSetGeometryMask

NAME

rtcSetGeometryMask - sets the geometry mask

SYNOPSIS

#include <embree4/rtcore.h>

void rtcSetGeometryMask(
RTCGeometry geometry,
unsigned int mask

);

DESCRIPTION

The rtcSetGeometryMask function sets a 32-bit geometry mask (mask argu-
ment) for the specified geometry (geometry argument).

This geometry mask is used together with the ray mask stored inside the
mask field of the ray. The primitives of the geometry are hit by the ray only if
the bitwise and operation of the geometry mask with the ray mask is not 0. This
feature can be used to disable selected geometries for specifically tagged rays,
e.g. to disable shadow casting for certain geometries.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO
RTCRay, rtcGetDeviceProperty

on uaXure an urror mode is set thEt can be quesi i using rtcGe 00
Embree API Reference n2

7 A% s batatyal ny BuildQuality

NAME

rtcSetGeometryBuildQuality - sets the build quality for the geometry

SYNOPSIS
#ln9lﬂﬂﬁﬂﬁﬁﬁlﬁﬁﬁﬁﬂﬁﬁﬁﬁﬂﬁﬁﬁaaﬂ _ @00 pc grgghdmfel O

Tevrfc cOrc s cp,
void rtcSetGeometryBuﬁdQuality(P

RTCGeometry geometry,
enum RTCBuildQuality quality
)

DESCRIPTION

The rtcSetGeometryBuildQuality function sets the build quality (quality ar-
gument) for the specified geometry (geometry argument). The per-geometry
build quality is only a hint and may be ignored. Embree currently uses the per-
geometry build quality when the scene build quality is set to RTC_BUILD_QUAL -
ITY_LOW. In this mode a two-level acceleration structure is build, and geometries
build a separate acceleration structure using the geometry build quality. The
per-geometry build quality can be one of:

e RTC_BUILD_QUALITY_LOW: Creates lower quality data structures, e.g. for
dynamic scenes.

e 0O000000000000000DOO

Embree API Reference n3

750 rtcSetGeometryMaxRadiusScale

NAME

rtcSetGeometryMaxRadiusScale - assigns a maximal curve radius scale factor for min-width feature

SYNOPSIS

#include <embree4/rtcore.h>

void rtcSetGeometryMaxRadiusScale(RTCGeometry geometry, float maxRadiusScale);

DESCRIPTION

The rtcSetMaxGeometryScale function specifies a maximal scaling factor for
curve radii used by the min-width feature.

The min-width feature can increase the radius of curves and points, in order
to reduce aliasing and improve render times. The feature is disabled by default
and has to get enabled using the EMBREE_MIN_WIDTH cmake option.

To use the feature, one has to specify a maximal curve radius scaling factor
using the rtcSetGeometryMaxRadiusScale function. This factor should be a small
number (e.g. 4) as the constructed BVH bounds get increased in order to bound
the curve in the worst case of maximal radii.

One also has to set the minWidthDistanceFactor in the RTCRayQueryCon-
text when tracing a ray. This factor controls the target radius size of a curve or
point at some distance away of the ray origin.

For each control point p with radius r of a curve or point primitive, the prim-
itive intersectors first calculate a target radius r’ as:

r' = length(p-ray_org) * minWidthDistanceFactor

Typically the minWidthDistanceFactor is set by the application such that the
target radius projects to the width of half a pixel (thus primitive diameter is pixel
sized).

The target radius r’ is then clamped against the minimal bound r and maximal
bound maxRadiusScale*r to obtain the final radius r’’:

r'' = max(r, min(r', maxRadiusScale*r))

Thus curves or points close to the camera are rendered with a normal radii
r, and curves or points far from the camera are not enlarged too much, as this
would be very expensive to render.

When rtcSetGeometryMaxRadiusScale function is not invoked for a curve
or point geometry (or if the maximal scaling factor is set to 1.0), then the curve
or point geometry renders normally, with radii not modified by the min-width
feature.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO
rtcinitRayQueryContext

Embree API Reference na

751 rtcSetGeometryBuffer

NAME

rtcSetGeometryBuffer - assigns a view of a buffer to the geometry

SYNOPSIS

#include <embree4/rtcore.h>

void rtcSetGeometryBuffer(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot,
enum RTCFormat format,
RTCBuffer buffer,
size_t byteOffset,
size_t byteStride,
size_t itemCount

);

DESCRIPTION

The rtcSetGeometryBuffer function binds a view of a buffer object (buffer
argument) to a geometry buffer type and slot (type and slot argument) of the
specified geometry (geometry argument).

One can specify the start of the first buffer element in bytes (byteOffset
argument), the byte stride between individual buffer elements (byteStride ar-
gument), the format of the buffer elements (format argument), and the number
of elements to bind (itemCount).

The start address (byteOffset argument) and stride (byteStride argument)
must be both aligned to 4 bytes, otherwise the rtcSetGeometryBuffer function
will fail.

After successful completion of this function, the geometry will hold a refer-
ence to the buffer object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO
rtcSetSharedGeometryBuffer, rtcSetNewGeometryBuffer

Embree API Reference n5

752 rtcSetSharedGeometryBuffer

NAME

rtcSetSharedGeometryBuffer - assigns a view of a shared data buffer
to a geometry

SYNOPSIS

#include <embree4/rtcore.h>

void rtcSetSharedGeometryBuffer(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot,
enum RTCFormat format,
const void* ptr,
size_t byteOffset,
size_t byteStride,
size_t itemCount

)

DESCRIPTION

The rtcSetSharedGeometryBuffer function binds a view of a shared user-
managed data buffer (ptr argument) to a geometry buffer type and slot (type
and slot argument) of the specified geometry (geometry argument).

One can specify the start of the first buffer element in bytes (byteOffset
argument), the byte stride between individual buffer elements (byteStride ar-
gument), the format of the buffer elements (format argument), and the number
of elements to bind (itemCount).

The start address (byteOffset argument) and stride (byteStride argument)
must be both aligned to 4 bytes; otherwise the rtcSetSharedGeometryBuffer
function will fail.

When the buffer will be used as a vertex buffer (RTC_BUFFER_TYPE_VER-
TEX and RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE), the last buffer element must
be readable using 16-byte SSE load instructions, thus padding the last element is
required for certain layouts. E.g. a standard float3 vertex buffer layout should
add storage for at least one more float to the end of the buffer.

The buffer data must remain valid for as long as the buffer may be used, and
the user is responsible for freeing the buffer data when no longer required.

Sharing buffers can significantly reduce the memory required by the applica-
tion, thus we recommend using this feature. When enabling the RTC_SCENE_
FLAG_COMPACT scene flag, the spatial index structures index into the vertex
buffer, resulting in even higher memory savings.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO
rtcSetGeometryBuffer, rtcSetNewGeometryBuffer

Embree API Reference né

753 rtcSetNewGeometryBuffer

NAME

rtcSetNewGeometryBuffer - creates and assigns a new data buffer to
the geometry

SYNOPSIS

#include <embree4/rtcore.h>

void* rtcSetNewGeometryBuffer(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot,
enum RTCFormat format,
size_t byteStride,
size_t itemCount

):

DESCRIPTION

The rtcSetNewGeometryBuffer function creates a new data buffer of specified
format (format argument), byte stride (byteStride argument), and number of
items (itemCount argument), and assigns it to a geometry buffer slot (type and
slot argument) of the specified geometry (geometry argument). The buffer data
is managed internally and automatically freed when the geometry is destroyed.

The byte stride (byteStride argument) must be aligned to 4 bytes; otherwise
the rtcSetNewGeometryBuffer function will fail.

The allocated buffer will be automatically over-allocated slightly when used
as a vertex buffer, where a requirement is that each buffer element should be
readable using 16-byte SSE load instructions.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO
rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer

Embree API Reference n7

754 RTCFormat

NAME

RTCFormat - specifies format of data in buffers

SYNOPSIS

#include <embree4/rtcore_ray.h>

enum RTCFormat

{
RTC_FORMAT_UINT,
RTC_FORMAT_UINT2,
RTC_FORMAT_UINT3,
RTC_FORMAT_UINT4,

RTC_FORMAT_FLOAT,
RTC_FORMAT_FLOAT2,
RTC_FORMAT_FLOAT3,
RTC_FORMAT_FLOAT4,
RTC_FORMAT_FLOATS,
RTC_FORMAT_FLOAT6,
RTC_FORMAT_FLOAT7,
RTC_FORMAT_FLOATS,
RTC_FORMAT_FLOAT9,
RTC_FORMAT_FLOAT10,
RTC_FORMAT_FLOAT11,
RTC_FORMAT_FLOAT12,
RTC_FORMAT_FLOAT13,
RTC_FORMAT_FLOAT14,
RTC_FORMAT_FLOAT15,
RTC_FORMAT_FLOAT16,

RTC_FORMAT_FLOAT3X4_ROW_MAJOR,
RTC_FORMAT_FLOAT4X4_ROW_MAJOR,

RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR,
RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,

RTC_FORMAT_GRID,

RTC_FORMAT_QUATERNION_DECOMPOSITION
Y

DESCRIPTION

The RTFormat structure defines the data format stored in data buffers provided
to Embree using the rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer, and
rtcSetNewGeometryBuffer API calls.

The RTC_FORMAT_UINT/2/3/4 format are used to specify that data buffers
store unsigned integers, or unsigned integer vectors of size 2,3 or 4. This format
has typically to get used when specifying index buffers, e.g. RTC_FORMAT_UINT3
for triangle meshes.

The RTC_FORMAT_FLOAT/2/3/4... format are used to specify that data
buffers store single precision floating point values, or vectors there of (size 2,3,4,

Embree API Reference

n8

etc.). This format is typcally used to specify to format of vertex buffers, e.g. the
RTC_FORMAT_FLOATS3 type for vertex buffers of triangle meshes.

The RTC_FORMAT_FLOAT3X4_ROW_MAJOR and RTC_FORMAT_FLOAT3X4_COL-
UMN_MAJOR formats, specify a 3x4 floating point matrix layed out either row ma-
joror column major. The RTC_FORMAT_FLOAT4X4_ROW_MAJOR and RTC_FORMAT_
FLOAT4X4_COLUMN_MAJOR formats, specify a 4x4 floating point matrix layed out
either row major or column major. The RTC_FORMAT_QUATERNION_DECOMPO-
SITION format specifies a structure that represents a quaternion decomposition
(see RTCQuaternionDecomposition) of an affine transformation. These formats
are used in the rtcSetGeometryTransform function or in geometry buffers with
type RTC_BUFFER_TYPE_TRANSFORM in order to set a transformation matrix for
instance and instance array geometries.

The RTC_FORMAT_GRID is a special data format used to specify grid primitives

of layout RTCGrid when creating grid geometries (see RTC_GEOMETRY_TYPE_GRID).

EXIT STATUS
SEE ALSO

rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer, rtcSetNewGeometryBuffer,
rtcSetGeometryTransform RTCQuaternionDecomposition

Embree API Reference

19

755 RTCBufferType

NAME

RTCFormat - specifies format of data in buffers

SYNOPSIS

#include <embree4/rtcore_ray.h>

enum RTCBufferType
{

RTC_BUFFER_TYPE_INDEX =0,
RTC_BUFFER_TYPE_VERTEX =1,
RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE = 2,
RTC_BUFFER_TYPE_NORMAL = 3,
RTC_BUFFER_TYPE_TANGENT = 4,
RTC_BUFFER_TYPE_NORMAL_DERIVATIVE = 5,
RTC_BUFFER_TYPE_GRID = 8,
RTC_BUFFER_TYPE_FACE = 16,
RTC_BUFFER_TYPE_LEVEL =17,
RTC_BUFFER_TYPE_EDGE_CREASE_INDEX = 18,
RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT = 19,
RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX = 20,
RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT = 21,
RTC_BUFFER_TYPE_HOLE = 22,
RTC_BUFFER_TYPE_TRANSFORM = 23,

RTC_BUFFER_TYPE_FLAGS = 32
Y

DESCRIPTION

The RTBufferType structure defines slots to assign data buffers to using the
rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer, and rtcSetNewGeometry-
Buffer API calls.

For most geometry types the RTC_BUFFER_TYPE_INDEX slot is used to assign
an index buffer, while the RTC_BUFFER_TYPE_VERTEX is used to assign the cor-
responding vertex buffer.

The RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE slot can get used to assign arbi-
trary additional vertex data which can get interpolated using the rtcinterpolate
API call.

The RTC_BUFFER_TYPE_NORMAL, RTC_BUFFER_TYPE_TANGENT, and RTC_BUFFER_
TYPE_NORMAL_DERIVATIVE are special buffers required to assign per vertex nor-
mals, tangents, and normal derivatives for some curve types.

The RTC_BUFFER_TYPE_GRID buffer is used to assign the grid primitive buffer
for grid geometries (see RTC_GEOMETRY_TYPE_GRID).

The RTC_BUFFER_TYPE_FACE, RTC_BUFFER_TYPE_LEVEL, RTC_BUFFER_TYPE_
EDGE_CREASE_INDEX, RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT, RTC_BUFFER_
TYPE_VERTEX_CREASE_INDEX, RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT, and
RTC_BUFFER_TYPE_HOLE are special buffers required to create subdivision meshes
(see RTC_GEOMETRY_TYPE_SUBDIVISION).

The RTC_BUFFER_TYPE_TRANSFORM buffer is used to provide instance trans-

formation information for instance array geometries (see RTC_GEOMETRY_TYPE_INSTANCE_ARRAY).

Embree API Reference 120

The RTC_BUFFER_TYPE_FLAGS can get used to add additional flag per primi-
tive of a geometry, and is currently only used for linear curves.
EXIT STATUS
SEE ALSO
rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer, rtcSetNewGeometryBuffer

Embree API Reference

121

756 rtcGetGeometryBufferData

NAME

rtcGetGeometryBufferData - gets pointer to
the first buffer view element

SYNOPSIS

#include <embree4/rtcore.h>

void* rtcGetGeometryBufferData(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot

);

DESCRIPTION

The rtcGetGeometryBufferData function returns a pointer to the first element
of the buffer view attached to the specified buffer type and slot (type and slot
argument) of the geometry (geometry argument).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO
rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer, rtcSetNewGeometryBuffer

Embree API Reference 122

757 rtcUpdateGeometryBuffer

NAME

rtcUpdateGeometryBuffer - marks a buffer view bound to the geometry
as modified

SYNOPSIS

#include <embree4/rtcore.h>

void rtcUpdateGeometryBuffer(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot

);

DESCRIPTION

The rtcUpdateGeometryBuffer function marks the buffer view bound to the
specified buffer type and slot (type and slot argument) of a geometry (geome-
try argument) as modified.

If a data buffer is changed by the application, the rtcUpdateGeometry-
Buffer call must be invoked for that buffer. Each buffer view assigned to a
buffer slot is initially marked as modified, thus this function needs to be called
only when doing buffer modifications after the first rtcCommitScene.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcCommitScene

Embree API Reference 123

758 rtcSetGeometrylintersectFilterFunction

NAME

rtcSetGeometryIntersectFilterFunction - sets the intersection filter
for the geometry

SYNOPSIS

#include <embree4/rtcore.h>

struct RTCFilterFunctionNArguments
{
int* valid;
void* geometryUserPtr;
const struct RTCRayQueryContext* context;
struct RTCRayN* ray;
struct RTCHitN* hit;
unsigned int N;
I

typedef void (*RTCFilterFunctionN)(
const struct RTCFilterFunctionNArguments* args
)

void rtcSetGeometryIntersectFilterFunction(
RTCGeometry geometry,
RTCFilterFunctionN filter

)

DESCRIPTION

The rtcSetGeometryIntersectFilterFunction function registers an inter-
section filter callback function (filter argument) for the specified geometry
(geometry argument).

Only a single callback function can be registered per geometry, and further
invocations overwrite the previously set callback function. Passing NULL as func-
tion pointer disables the registered callback function.

The registered intersection filter function is invoked for every hit encoun-
tered during the rtcIntersect-type ray queries and can accept or reject that
hit. The feature can be used to define a silhouette for a primitive and reject hits
that are outside the silhouette. E.g. a tree leaf could be modeled with an alpha
texture that decides whether hit points lie inside or outside the leaf.

If the RTC_BUILD_QUALITY_HIGH mode is set, the filter functions may be
called multiple times for the same primitive hit. Further, rays hitting exactly
the edge might also report two hits for the same surface. For certain use cases,
the application may have to work around this limitation by collecting already
reported hits (geomID/primID pairs) and ignoring duplicates.

The filter function callback of type RTCFilterFunctionN gets passed a num-
ber of arguments through the RTCFilterFunctionNArguments structure. The
valid parameter of that structure points to an integer valid mask (0 means in-
valid and -1 means valid). The geometryUserPtr member is a user pointer op-
tionally set per geometry through the rtcSetGeometryUserData function. The
context member points to the ray query context passed to the ray query func-
tion. The ray parameter points to N rays in SOA layout. The hit parameter
points to N hits in SOA layout to test. The N parameter is the number of rays and
hits in ray and hit. The hit distance is provided as the tfar value of the ray. If

Embree API Reference

124

the hit geometry is instanced, the instID member of the ray is valid, and the ray
and the potential hit are in object space.

The filter callback function has the task to check for each valid ray whether it
wants to accept or reject the corresponding hit. To reject a hit, the filter callback

function just has to write 0 to the integer valid mask of the corresponding ray.

To accept the hit, it just has to leave the valid mask set to -1. When accepting
a hit, the filter function is further allowed to change the hit and decrease the
tfar value of the ray but it should not modify other ray data nor any inactive
components of the ray or hit.

When performingray queries using rtcIntersect1, it is guaranteed that the
packet size is 1 when the callback is invoked. When performing ray queries using
the rtcIntersect4/8/16 functions, it is not generally guaranteed that the ray
packet size (and order of rays inside the packet) passed to the callback matches
the initial ray packet. However, under some circumstances these properties are
guaranteed, and whether this is the case can be queried using rtcGetDevice-
Property.

For many usage scenarios, repacking and re-ordering of rays does not cause
difficulties in implementing the callback function. However, algorithms that
need to extend the ray with additional data must use the rayID component of
the ray to identify the original ray to access the per-ray data.

The implementation of the filter function can choose to implement a single
code path that uses the ray access helper functions RTCRay_XXX and hit access
helper functions RTCHit_XXX to access ray and hit data. Alternatively the code
can branch to optimized implementations for specific sizes of N and cast the ray
and hit inputs to the proper packet types.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryOccludedFilterFunction

Embree API Reference 125

759 rtcSetGeometryOccludedFilterFunction

NAME

rtcSetGeometryOccludedFilterFunction - sets the occlusion filter
for the geometry

SYNOPSIS

#include <embree4/rtcore.h>

void rtcSetGeometryOccludedFilterFunction(
RTCGeometry geometry,
RTCFilterFunctionN filter

)

DESCRIPTION

The rtcSetGeometryOccludedFilterFunction function registers an occlu-
sion filter callback function (filter argument) for the specified geometry (ge-
ometry argument).

Only a single callback function can be registered per geometry, and further
invocations overwrite the previously set callback function. Passing NULL as func-
tion pointer disables the registered callback function.

The registered occlusion filter function is invoked for every hit encountered
during the rtcOccluded-type ray queries and can accept or reject that hit. The
feature can be used to define a silhouette for a primitive and reject hits that are
outside the silhouette. E.g. a tree leaf could be modeled with an alpha texture
that decides whether hit points lie inside or outside the leaf.

Please see the description of the rtcSetGeometryIntersectFilterFunc-
tion for a description of the filter callback function.

The rtcOccluded-type functions terminate traversal when a hit got commit-
ted. As filter functions can only set the tfar distance of the ray for a committed
hit, the occlusion filter cannot influence the tfar value of subsequent traversal,
as that directly ends. For that reason rtcOccluded and occlusion filters cannot
get used to gather the next n-hits, and rtcIntersect and intersection filters
should get used instead.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometrylntersectFilterFunction

, 1## HSHLHA-1# jko

p:oi 13! #3 #.,#319 - +# (+3#1 5-13(.- 1., 1&5,#-32

UWF6HW*HRPHWU\(QDEOH)LOWHU)XQFWLRQ)URPSUIXPHQWYV HQDEOHYV
DUJXPHQW ILOWHU IXIQRWIKRHQYHRPHWU\

LOFOXGHPEUHH UWFRUH K!

YRLGWF6HW*HRPHWU\(QDEOH)LOWHU)XQFWLRQ)URP$SUIXPHQWYV
57&*HRPHWU\ JHRERWBWQDEOH

51JT GVODUJPO FOBCMFT JOWPLBUJPO UIF&OMUFS GVODUJPO QBTTFE UISP\
WHUVHFWSUJXPHDIR¥FOXGHGS$UJINPHOMAVIOUFSTFDU BOE PDDMVEFE
RVFSJFT *G FOBCMF JT USVF UIFBSHVNFOU GJMUFS GVODUJPO JOWPLBUJPO
UIFHFPNFUSZ PS EJTBCMFE PUIFSXJTF #Z EFGBVMU UIF JOWPLBUJPO PG UIF I
GJMUFS GVODUJPO JTEJTBCMFE GPS TPNFHFPNFUSZ
5/FBSHVNFOU GJMUFS GVODUJPO JOWPLBUJPODBOBMTPHFUFOGPSDFE GP.
FUSZ CZ VBY@BISW4B648(5<B)/$*B,192.(B$5*80(1SBZ/RMFSZ
GMBH UIBU DB O W QBTUBAEEWP2FFOXB\WGDUJPOT 4FF 4FD
UJBOD*0JU*OUFS BREUTSHOUNPODMV BPES'EARSNEGUBIMT
*OPSEFSUPVTFUIFBSHVNFOUGJMUFS GVODUJPO GPS TPNF TDFOF UIBU GF
UJPOBMMZ IBT UP HF UsF ©Bs@ MLFE) M TE)Q/H (8BF81&7,218B, 1B
$5*80(L7BDFOF GMBH 2EBP 4FDUDEPOE WBIFTEFUBJIMT

00 GBIJMVSFBOFSSPSDPEFJT TFUWHBIWDMHEOFHHEWURVFSJFE VTJOH

SUD*0JU*OUF S TFWh*'G HYONDFBOWM ESRUED & HWANDFFOQUFT MBH T

, L## HSHLH-1# ikp

P:0j13! -6.%# -3#12#!3 (+3#1 1., #.,#319

UWF, QYRNH , QWHUVHFW)LOWHU)URP*HRPHWU\ LQYRNHV WKH
LQWHUVHFWLRQ ILOWHU IXQFWLRQ IURP WKH JHRPHWU\

LOFOXGHPEUHH UWFRUH K!

YRLEWF,QYRNH,QWHUVHFW)LOWHU)URP*HRPHWU\
FROVWWUXBW&, QWHUVHFW)XQFWLRQ1$UJXPHQWY DUJV
FROVWWUXBW&)LOWHU)XQFWLRQ1I$UIJXPHQWY ILOWHUSUJV

5lFUWF,QYRNH, QWHUVHFW)LOWHW VRO UERPIOWDBO CF DBMMFE JOTJEF

BG7& QWHUVHFW)XYFWIRHEPNFUSZ DBMMCBDL GVODUJPO UP JOWPLF UIF JO
UFSTFDUJPO GJMUFS SFHIJTUFSFE7ER OWHB)KRRNWURSY 'PS UIJT BO
1$UIXPHQWNSVDUVSF NVTU WHBESHMBHREHWEFQWHUVHFW)LO
WHU)XQFWXRIDICBTJDBMMZ DPOTJTUT PGB WBMJENBTL BIJUQBDLFUUP GIMU
DPSSFTQPOEJOH SBZ QBDLFU BOE UIF QBOWFWTJ[F "GUFS UIF JOWPDBUJPO |
YRNH,QWHUVHFW)LOWHU)URP*MERBWUN UIBU BSF TUJMM WBMJE WBMJE NBTL
TFUUP TIPVMEVQEBUF B I1JU

'PS QFSGPSNBODF SFBTPOT UIJT GVODUJPO EPFT OPU EP BOZ FSSPS DIFDLT
OPUTFUBOZFSSPSGMBHT PO GBJMVSF

SUD*OWPLFODDMVEFE"JIMIDHMF SPANAIRPNEBSCUFSTFDU'VODUJPO

, L## HSHLH-1# ikq

p;okl13! -6.*# Il+5"#" (+3#1 1., #.,#319

UWF, QYRNH2FFOXGHG)LOWHU)URP*HRPHWU\ LQYRNHV WKH RFFOXVLRQ
ILOWHU IXQFWLRQ IURP WKH JHRPHWU\

LOFOXGHPEUHH UWFRUH K!

YRLEWF, QYRNH2FFOXGHG)LOWHU)URP*HRPHWU\
FROQVWWUXBW&2FFOXGHG)XQFWLRQ1$UJXPHQWY DUJV
FROQVWWUXBW&)LOWHU)XQFWLRQI$UIXPHQWYV ILOWHUS$UJV

5IFUWF,QYRNH2FFOXGHG)LOWHUBMPBPHRFHWDBO CF DBMMFE JOTJEF BO
57&2FFOXGHG)XQV¥WESQHFPNFUSZ DBMMCBDL GVODUJPO UP JOWPLF UIF PDDMV
TIJPO GIMUFS SFHJTUFSFE U P5U &FLIOMRIN XSV LS $UIXT BO

PHOQWWSVDUVSF NVTU CWHAB 8 #BHFPE WILREQWHUVHFW)LOWHU)XQF

WLROXIJDI CBTJDBMMZ DPOTJTUT PG B WBMJE NBTL B I1JU QBDLFU UP GJMUFS |
TQPOEJOH SBZ QBDLFU BOEUIF QBDLBWH QWVRNGAFFS UIFJOWPDBUJPO PG
FOXGHG)LOWHU)URPPHRWMEEB\ZT UIBU BSF TUJMM WBMJE WBMJE NBTLTFU UP
TIPVME TJHOBM BO PDDMVTJPO

'PS QFSGPSNBODF SFBTPOT UIJT GVODUJPO EPFT OPU EP BOZ FSSPS DIFDLT
OPUTFUBOZFSSPSGMBHT PO GBJMVSF

SUD*OWPLF*OUFSTFDUSUWDUFS SPRANNFBSEOUBZMVEFE'VODUJPO

, 1## HSHLHA-1# jkr

p;ol 13! #3 #.,#319 2#1 3

UWF6HW*HRPHWU\8VHU'DWD VHWV WKH XVHU GHILQHG GDWD SRLQWHU RI WKH
JHRPHWU\

LOFOXGHPEUHH UWFRUH K!

YRLOWF6HW*HRPHWU\8VHU'DWD 57 &*HR P M R/IUGXIVHHRIBAWU \

SINWF6HW*HRPHWU\G/MODWDPO TFUTUIFVTFSXERGIMDIFE EBUB QPJOUFS
BSHVNFOU GPS BHRFIPWBRWHIANFOU 51JT VTFS EBUB QPJOUFS JT JO
UFOEFEUPCFQPJOUJOHUPUIFBQQMJDBUJPOYT SFQSFTFOUBUJPO PG UIFHF
QBTTFEUP WBSJPVTDBMMCBDL GVODUJPOT 5IFBQQMJIDBUJPODBO VTF UIJT C
UIFDBMMCBDL GVODUJPOT UPBDDFTTJUTHFPNFUSZ SFQSFTFOUBUJPO

S5IlUWF*HW*HRPHWU\8GMODWDBPO DBOCFVTFEUPRVFSZBOBMSFBEZTFU
VTFSEBUB QPJOUFSPGBHFPNFUSZ

00 GBIJMVSFBOFSSPSDPEFJT TRWSIBW'BBIO-FBRWBRNESIFE VTJOH

SUD(FU(FPNFUSZ6TFS%BUB

, 1## HSHLHA-1# jli

p,oml3! #3 #.,#319 2#1 3

UWF*HW*HRPHWU\8VHU'DWD UHWXUQV WKH XVHU GDWD SRLQWHU
RI WKH JHRPHWU\

LOFOXGHPEUHH UWFRUH K!

YRLGUWF*HW*HRPHWU\8VHU'DWD 57&*HRPHWU\ JHRPHWU\

SIFUWF*HW*HRPHWU\8GNWODWDO PO RVFSJFT UIF VTFS EBUB QPJOUFS QSFWJ
PVTMZ TRORWRKIMWW*HRPHWU\8V&HIIFOWIF6HW*HRPHWU\8VHU'DWD
XBT OPU DBMMFEZFUVSOFE

51 JT GVODUJPOJT TVQQPTFE UP CF VTFE EVSJOH SFOEFSJOH CVU POMZ TV
POUIF $16 BOE OPUJOTJEF 4:$- LFSOFMT PO UIF (16 *OTJEF B 4:%$-LFSOFM UIF
UWF*HW*HRPHWU\8VHU'DWGYURPBERIHPEHIBT UP HFU VTFE

00 GBIJMVSFBOFSSPSDPEFJT TRWSIBW'BBIO-EBRUBRESIFE VTJOH

SUD4FU(FPNFUSUB®TFEWEPNEFUSZ6TFS%BUB'SPN4DFOF

, L## HSHLH-1# il

p;onl3! #3 #.,#319 2#1 3 1., '#-#

UWF*HW*HRPHWU\8VHU'DWD)URP6FHQH UHWXUQV WKH XVHU GDWD SRLQWHU
RI WKH JHRPHWU\ WKURXJK WKH VFHQH REMHFW

LOFOXGHPEUHH UWFRUH K!

YRLGUWF*HW*HRPHWU\8VHU'DWD)URP6FHQH X1 RKGBWHRH

SINWF*HW*HRPHWU\8VHU ' DWBYWURPEBIP@HRVFSIJFTUIFVTFSEBUBQPJOUFS
QSFWJIPVTMZWIFeHVWHRIPHWU\SGBE'WWDF HFPNFUSZ XJUI JOEFY
JHRP,GSPN UIF TQ F DVRHIHEI FOWOGEFHW*HRPHWU\/BID'DWD
OPUDBMMFHTEZBEBUVSOFE

*O DPOUSBUWFYPWIHRPHWU\8@NO DWDBWF*BIM*HRPH
WU\8VHU'DWD)URGBMBGIDYHIPO BO HFU VTFE EVSJOH SFOEFSJOH JOTJEF B 4:%-
LFSOFM

00 GBIJMVSFBOFSSPSDPEFJT TRWSIBW'BBIO-FBRWBRNESIFE VTJOH

SUD4FU(FPNFUSD®TFSWEPWNFUSZ6TFS%BUB

, 1## HSHLHA-1# jlk

p;oo0l13! #3 #.,#319 2#1 1(,(3(6# .5-3

UWF6HW*HRPHWU\8VHU3ULPLWLYH&RXQW VHWV WKH QXPEHU RI SULPLWLYHV
RI' D XVHU GHILQHG JHRPHWU\

LOFOXGHPEUHH UWFRUH K!
YRLWF6HW*HRPHWU\8VHU3ULPLWLYH&RXQW

57&*HRPHWU\ JHRPHWU\
XQVLIQHGWVHUSULPLWLYH&RXQW

5FUWF6HW*HRPHWU\8VHU3ULRBWD DHRKIPX@OWFUT UIF OVNCFS PG VTFS
EFGIJOFE QSYNURUMPEWLYQB8SENFUFS PGUIFTQFDJGJFEVTFS EFGJOFE
HFPNFIHRPHWUB SBNFUFS

00 GBIJMVSFBOFSSPSDPEFJT TRWSIBW'BBIO-EBRUBRESIFE VTJOH

355@(&0.&53:@5:1&@64&3

, 1## HSHLHA-1# il

p;opl3! #3 #.,#319 .5-"2 5-13¢(.-

UWF6HW*HRPHWU\%RXQGV)XQFWLRQ VHWY D FDOOEDFN WR TXHU\ WKH
ERXQGLQJ ER[RI XVHU GHILQHG SULPLWLYHYV

LOFOXGHPEUHH UWFRUH K!

VWUXBWE&%RXQGV)XQFWLRQS$SUIXPHQWYV
N
YRLGIJHRPHWU\8VHU3WU
XQVLIQHGWULP,"
XQVLIQHGWLPHG6WHS
VWUXBW&%RXQGY ERXQGVBR

W\SHGNRLG 57&%RXQGV)XQFWLRQ
FROVWWUXBWE&%RXQGV)XQFWLRQ$UIXPHQWY DUJV

YRLEWF6HW*HRPHWU\%RXQGV)XQFWLRQ
57&*HRPHWU\ JHRPHWU\
57&%RXQGV)XQFWLRQ ERXQGV
YRLGXVHU3WU

5||FUWF6HW*HRPHWU\%RXQGW)RDIWPRDSFHJTUFST B CPVOEJOH CPY DBMM
CBDLGVERXQEPE®OHVNFOU XJUNQBZRERBANFOU GPSUIFTQFD
JGJFE VTFS BFfPANHMBLISAVNFOU

ooMzBTJOHMFDBMMCBDL GVODUJPO DBO CF SFHIJTUFSFE QFS HFPNFUSZ E
JOWPDBUJPOTPWFSXSJUFUIFQSFWJPYSIMBZATGMOIDBMMCBDL GVODUJPO 1BTTJ
UJPO QPJOUFSEJTBCMFTUIF SFHJTUFSFEDBMMCBDL GVODUJPO

*O4:$-NPEFUIF#7)DPOTUSVDUJPOJTEPOFPOUIFIPTUBOEUIFQBTTFEGVO
UJPO QPJOUFS NVTUCFBIPTU TIEFGVODUJPO QPJOUFS

5|lF SFHIJTUFSFECPVOEJOH CPY DBMMCBDL GVODUJPOJT JOWPLFE UP DBMD
BMIJIHOFE CPVOEJOH CPYFT PG UIF QSIJNJUJWFT PG UIF VTFS EFGJOFE HFPNF
JOHTQBUJBM BDDFMFSBUJPO TUSVDUVSF DPOTUSVDUJPO 5IF CPVOEJOH CP
578 % RXQGV)XQAFZMQRQATIJIOWPLFE XJUIBQPJOURSBRBEMUSVDUVSFPGUZQF
JXQFWLRQS$SUJIXRPHONWNDPOUBJOT WBSJPVT BSHVNFOUT TVDIBT UIFVTFS EBUB
PGUIFHFRNRRHSVZU\SVINEBSMWODFS UIF* % PGUIFQSIJNJUJWFUPDBMDVMBUF
UIFCPVOEROLEMNFNCFS UIFUIJNFTUFQBUXIJDIUPDBMDVMBUFUIFCPVOET
WLPHEWNHSNCFS BOE B NFNPSZ MPDBUJPO UP XSJUF UIFDBMDVMBUFE CPVOE
ERXQGWSRNCFS

*OBUZQJDBM VTBHF TDFOBSJP POF XPVME TUPSF B QPJOUFS UP UIF JOUFS(
TFOUBUJPO PG UIF VTFS HBWNEHNGAH RECHWWD 8)VHMITFIDOWD
DBMMCBDL GVODUJPO DBO UIFOJJSRRPEWUIBYHUBMIBFS GSPN UIF
BOEDBMDVMBUFUIFQSPQFSCPVOEJOHCPY GPSUIFSFRVFTUFEQSJNJUJWF B
TUPSFUIBUCPVOEJOHCPY UP BURXEBTWIRNIBABIPO TUSVDUVSF

00 GBIJMVSFBO FSSPSDPEFJT TROWSIBW'BBIO-FEBERUBRESIFE VTJOH

1## HEH#HLH-1#

jIm

353@(&0.&53:@5:1&@64&3

, 1## HSHLHA-1# jiln

p;oql3! #3 #.,#319 -3#12#!3 5-13(.-

UWF6HW*HRPHWU\,QWHUVHFW)XQFWLRQ VHWYV WKH FDOOEDFN IXQFWLRQ WR
LQWHUVHFW D XVHU JHRPHWU\

LOFOXGHPEUHH UWFRUH K!

VWUXBW&, QWHUVHFW)XQFWLRQL1I$SUIJXPHQWYV
N
LQWYDOLG
YRLGJHRPHWU\8VHU3WU
XQVLIQHGWSULP,'
VWUXBW&5D\AXHU\&RQWH[W FRQWHI[W
VWUXBW&5D\+LW1 UD\KLW
XQVLJIQHGW
XQVLIQHGWHRP,'

W\SHGNRLG 57&, QWHUVHFW)XQFWLRQ1
FROVWWUXBW&, QWHUVHFW)XQFWLRQ1$UJXPHQWY DUJV

YRLEWFE6HW*HRPHWU\,QWHUVHFW)XQFWLRQ
57&*HRPHWU\ JHRPHWU\
57& QWHUVHFW)XQFWLRQ1 LOQWHUVHFW

5IFUWF6HW*HRPHWU\,QWH UV IBAMW) PYRVPIREFHIJTUFST B SBZ QSJIJNJUJWF JO
UFSTFDUJPO DBMII®BDIBGWONBORO GPS UIF TQFDJGJFE VTFS HEPN
FUSBRPHWWBHVNFOU

OOMZ B TJOHMF DBMMCBDL GVODUJPO DBO CF SFHJTUFSFE QFS HFPNFUSZ B
JOWPDBUJPOTPWFSXSJUFUIF QSFWJPVSIMBZ TGRAWUOIDBMMCBDL GVODUJPO 1BTTJ
UJPO QPJOUFS EJTBCMFT UIF SFHJTUFSFEDBMMCBDL GVODUJPO

5lF SFHJTUFSFEDBMMCBDUGVN,QWUH UREQF 5BX RVFESCET
UPDBMDVMBUFUIFJOUFSTFDUJPOPGBSBZQBDLFUPGWBSJBCMFTJ[FEXJUIPO
QSJNJUJWF 5IF DBMMC BB, GWHOUNHBROXBIGWEQB TTFE
BOVNCFS PG BSHVNF O TOWSPWH MW XB FWLR QL BBIMB HQW V
UVSF 5IFIWBMUEGIFT UIF SBEAQ®PLEBUTUEBO BSSBZ PG JOUF
HFSTUIBUTQFDJGZ XIFUIFSUIFDPSSFTQPOB#OHSBZJTWBMJE PSJOWBMJE
RPHWU\8VHNEWCFS QPJOUTUPUIFHFPNFUSZVTFSEBUBQSFWJPVTMZTFUUISPV
UWFBHW*HRPHWU\8WHIBRMMDIYWNCFS QPJOUT UP UIF SBZ RVFSZ DPO
UFYUQBTTFE UP UIBIS\BIZMEWEFS QPIOUT UP B SBZBOE IJU QBDLFU
PG WBSJBCBGETUHRP BOEULP,NFNCFS JEFOUJGJFT UIF HFPNFUSZ
*0% BOE QSIJNJUJWF *% PG UIF QSJNJUJWF UP JOUFSTFDU

5IFUDDPNQPOFOWMKEMISEVDUVSFDPOUBJOT WBMJE EBUB JOQBSUJDVMBS
UIWIDWBMVFEJT UIFDVSSFOUDMPTFTU IJU EXTWBODF GPVOE "MM EBUB JOTJE|
DPNQPOFOUDPKGMUSEVDUVSF BSF VOEFGJOFEBOE TIPVME OPUCF SFBECZ UIF
GVODUJPO

5/F UBTLPG UIF DBMMCBDL GVODUJPOJTUP JOUFSTFDU FBDI BDUJWF SBZ G¢
QBDLFU XJUIUIF TQFDJGJFE VTFS QSJNJUJWF *G UIFVTFS EFGJOFE QSJNJUJ!
CZBSBZPGUIFSBZQBDLFU UIFGVODUJPO TIPVME SFUVSO XJUIPVUNPEJGZJC

, 1## HSHLHA-1# jlo

PSI1JU *G BO JOUFSTFDUJPO PG UIF VTFS EFGJOFE QSJNJUJWF XJUI UIF SBZ >
JOUIF WBMJE SIROH®I6GSPN TIPVME VQEBUF UIF IJUEJTUBODF PG UIF
SBWIDMFNCFS BOEXWI EJIWQVW JHRP,SULP,NFNCFST *O

QBSUJDVMBS UIFDVSSFOUMZ JOURSIVRMBUFMEPTGIBIFDF JT TUPSFE JO UIF

SBZ RVFSZ DPOUFYU XIJDINVTUIQNERFQOPRPBEUVIBUP UIF

1JU

"TBQSJNJUJWF NJHIU IBWF NVMUJQMF JOUFSTFDUJPOT XJUIBSBZ UIFJOUF
GIJMUFSGVODUJPOOFFETUPCFJOWPLFECZUIFVTFSHFPNFUSZJOUFSTFDUJP
FBDIFODPVOUFSFE JOUFSTFDUJPO JG GJMUFSJOHPGJOUFSTFDUJPOTJTEFT
BDIJFWFE UISRYHIYRINH, QWHUVHFW)LOWHWD)BRIMHRPHW U\

8JUIJOUIFVTFSHFPNFUSZ JOUFSTFDU GVODUJPO JUJTTBGF UP USBDF OF X
DSFBUF OFX TDFOFT BOE HFPNFUSJFT

8IFOQFSGPSNJOH SBWRVEBHBTAMMWDHMVBSBOUFFE UIBU UIF
QBDLFUTJ[FJT XIFOUIFDBMMCBDLJTJOWPLFE 8IFOQFSGPSNJOHSBZRVFSJ
UIBWF,QWHUVHFWGVODUJPOT JUJT OPUHFOFSBMMZ HVBSBOUFFE UIBU UIF SBZ
QBDLFU TJ[F BOEPSEFSPG SBZTJOTJEF UIF QBDLFU QBTTFE UP UIF DBMMCBI
UIFJOJUJBM SBZ QBDLFU)PXFWFS VOEFS TPNFDJSDVNTUBODFTUIFTF QSPQ
HVBSBOUFFE BOE XIFUIFS UIJTJT UIBVWDBAWDBBICFEF RVFSJFE VTJOH
3URSHUW\

'PSNBOZVTBHF TDFOBSJPT SFQBDLJOHBOE SF PSEFSJOH PG SBZT EPFTOP
EJGGJDVMUJFT JO JNQMFNFOUJOH UIF DBMMCBDL GVODUJPO)PXFWFS BMH
OFFE UP FYUFOE UIF SBZ XJUI BEEUDVUFPBDEBBEB MWPTGU VTF UIF
UIF SBZUP JEFOUJGZ UIFPSJHJOBM SBZ UP BDDFTTUIF QFS SBZEBUB

00 GBIJIMVSFBO FSSPSDPEFJT TROWSIBW'BBIOFERUBRESIFE VTJOH

SUD4FU(FPNFUSZODBNVMVEFE(FRPPREUBDOTFPISWPBBBOUFSTFDU
'‘JMUFS'SPN(FPNFUSZ

. 1## HOHLH-1# jlp

p;or 13! #3 #.,#319 !1+5"#" 5-13(.-

UWF6HW*HRPHWU\2FFOXGHG)XQFWLRQ VHWYV WKH FDOOEDFN IXQFWLRQ WR
WHVW D XVHU JHRPHRFBFOXVLRQ

LOFOXGHPEUHH UWFRUH K!

VWUXBW&2FFOXGHG)XQFWLRQ1I$UIJXPHQWYV
N
LQWYDOLG
YRLGJHRPHWU\8VHU3WU
XQVLIQHGWSULP,'
VWUXBW&5D\AXHU\&RQWH[W FRQWHI[W
VWUXBW&5D\1 UD\
XQVLJIQHGW
XQVLIQHGWHRP,'

WA\SHGNRLG 57&2FFOXGHG)XQFWLRQ1
FRQVWWUXBW&2FFOXGHG)XQFWLRQ1$UJXPHQWY DUJV

YRLEWF6HW*HRPHWU\2FFOXGHG)XQFWLRQ
57&*HRPHWU\ JHRPHWU\
57&2FFOXGHG)XQFWLRQ1 ILOWHU

5| FUWFEHW*HRPHWU\2FFOXGEBEIXQBWRRQSFHIJTUFST B SBZ QSIJNJUJWF PD
DMVTJPO DBMM CEOWHIEBHYINFIOPLO GPS UIF TQFDJGJFE VTFES HFPNFUSZ
JHRPHWBWBHVNFOU

OOMZB TJOHMF DBMMCBDL GVODUJPO DBO CF SFHJTUFSFE QFSHFPNFUSZ E
JOWPDBUJPOTPWFSXSJUFUIFQSFWJPYsIMBZATGRMODBMMCBDL GVODUJPO 1BTTJ
UJPO QPJOUFSEJTBCMFTUIF SFHJTUFSFEDBMMCBDL GVODUJPO

SIFSFHIJTUFSFEDBMMCBD IU®VZFB OB BQH I BIVPLFEICGT
UPUFTUXIFUIFSUIFSBZTPGBQBDLFUPGWBSJBCMFTJ[FBSFPDDMVEFECZBYV
QSIJNJUIJWF 5IF DBMMCBIXL2 RO D HA PXOQPWEUEZABE-TTFE B
OVNCFSPGBSHVNFOEREKS R&HIG XIF W LR Q IT$W S XmHOWS/F
51F WBMMEFFDJIGJIFT UIF SBED@QBPUPBUTIUYFE BO BSSBZ PG JOUFHFST
XIJDITQFDJGZ XIFUIFSUIFDPSSFTQPOEJOHI®BZ JT WBMJE PSJOWBMJE
RPHWU\S8VHNBWCFS QPJOUTUPUIFHFPNFUSZVTFSEBUBQSFWIJPVTMZTFUUISPV
UWFBHW*HRPHWU\8\WHBRMWMDNWNCFS QPJOUT UP UIF SBZ RVFSZ DPO
UFYUQBTTFEUP UIEBSBENRVFSRDPUIFUT UP B SBZ QBDLFU PG WBSJBCMF
TIPFBOE JHEP BOEULP NFNCFSJEFOUJGJFTUIFHFPNFUSZ*% BOE QSJN
JUIWF*% PG UIFQSIJNJUIJWFUP JOUFSTFDU

5IlFFUBTLPGUIFDBMMCBDL GVODUJPOJTUPJOUFSTFDU FBDIBDUJWEF SBZ G¢
OBDLFU XJUIUIFTQFDJGJFEVTFS QSIJNJUJWF *G UIFVTFS EFGJOFE QSJNJUJ!
CZBSBZPGUIFSBZQBDLFU UIFGVODUJPOTIPVME SFUVSO XJUIPVUNPEJGZJC
*G BO JOUFSTFDUJPO PG UIF VTFS EFGJOFE QSJNJUJWF XJUI UIF SBZ XBT GPV
WBMJE SBOWHMHDMEEPN JU TIPVMBEIDRAUFNIGFS PG UIF SBZ UP

LQI

. 1## HOHLH-1# jlqg

"T B QSIJNJUIJWF NJHIU IBWF NVMUJQMF JOUFSTFDUJPOT XJUI B SBZ UIF PDI
GIJMUFS GVODUJPO OFFETUP CFJOWPLFECZUIFVTFSHFPNFUSZPDDMVTJPO
FBDIFODPVOUFSFEJOUFSTFDUJPO JGGIJIMUFSJOHPGJOUFSTFDUJPOTJTEFT
BDIJFWFE UISRR¥HIYRINH2FFOXGHG)LOWHUPIBRWNHRPHW U\

8JUIJOUIFVTFSHFPNFUSZPDDMVTIJPO GVODUJPO JUJTTBGFUPUSBDF OFX
DSFBUFOFXTDFOFTBOE HFPNFUSJFT

8IFO QFSGPSNJOH SBUW2FBJKAHLUICHVBSBOUFFE UIBU UIF
QBDLFU TJ[FJT XIFOUIFDBMMCBDLJT JOWPLFE 8IFO QFSGPSNJOH SBZ RVFS
JOH UMF2FFOXGHGGVODUJPOT JUJTOPUHFOFSBMMZHVBSBOUFFEUIBUUIFSBZ
QBDLFU TJ[F BOEPSEFS PG SBZTJOTJEF UIF QBDLFU QBTTFE UP UIF DBMMCBI
UIFJOJUJBM SBZ QBDLFU)PXFWFS VOEFS TPNFDJSDVNTUBODFTUIFTF QSPQ
HVBSBOUFFE BOE XIFUIFSUIJTJT UIBVWBHAWBBO-EF RVFSJFE VTJOH
BURSHUW\

'PSNBOZVTBHF TDFOBSJPT SFQBDLJOHBOE SF PSEFSJOHPG SBZT EPFT OP
EJGGJDVMUJFT JOJNQMFNFOUJOH UIF DBMMCBDL GVODUJPO)PXFWFS BMH
OFFEUP FYUFOE UIF SBZ XJUI BEEUDYR®PBNQEBEBD MNYPGU VTF UIF
UIFSBZUPJEFOUJGZUIFPSJHJOBM SBZUP BDDFTTUIF QFS SBZEBUB

00 GBIJMVSFBOFSSPSDPEFJT TRUWSFBW BBOFERBRESIFE VTIJOH

SUD4FU(FPNFUS Z*O BRI PPONDFW IGO0 FWeBIUR D D MV E
FE'JMUFS'SPN(FPNFUSZ

, 1## HSHLHA-1# jlr

p:pi 13! #3 #.,#319 . (-3 5#19 5-13(.-

UWF6HW*HRPHWU\3RLQW4XHU\)XQFWLRQ VHWYV WKH SRLQW TXHU\ FDOOEDFN IXQFWLR
IRUD JHRPHWU\

LOFOXGHPEUHH UWFRUH K!

VWUXBW&3RLQWA4XHU\)XQFWLRQS$SUIXPHQWYV
N
WKH ZRUOG VSDFH TXHU\ REMHFW WKDW ZDV SDVVHG DV DQ DUJXPHQW RI UWF3R
VWUXBW&3RLQWA4XHU\N TXHU\

XVHG IRU XVHU LQSXW RXWSXW GDWD :LOO QRW EH UHDG RU PRGLILHG LQWHUQDC
YRLGXVHU3WU

SULPLWLYH DQG JHRPHWU\ ," Rl SULPLWLYH
XQVLJQHGWSULP,"
XQVLIJQHGWJIHRP,"

WKH FRQWH[W ZLWK WUDQVIRUPDWLRQ DQG LQVWDQFH ,' VWDFN
VWUXBW&3RLQWAXHU\&RQWH[W FRQWHI[W

VFDOLQJ IDFWRU LQGLFDWLQJ ZKHWKHU WKH FXUUHQW LQVWDQFH WUDQVIRUPDWLI
LV D VLPLODULW\ WUDQVIRUPDWLRQ
IORDWLPLODULW\6FDOH

W\SHGERROS57&3RLQWA4XHU\)XQFWLRQ
VWUXBW&3RLQWAXHU\)XQFWLRQS$UIJXPHQWY DUJV

YRLEWFE6HW*HRPHWU\3RLQW4XHU\)XQFWLRQ
57&*HRPHWU\ JHRPHWU\
57&3RLQW4XHU\)XQFWLRQ TXHU\)XQF

SIFUWF6HW*HRPHWU\3RLQWA4XBUMODXMBWRRQSFHITUFST B QPJOU RVFSZ
DBMMCBDLTGHMO\DXBRIFPKOVNFOU GPS UIF TQFIRFGHWE HFPNFUSZ
BSHVNFOU

oomMmzBTJOHMFDBMMCBDL GVODUJPO DBO CF SFHIJTUFSFE QFS HFPNFUSZ B
JOWPDBUJPOTPWFSXSJUFUIFQSFWIPYSTMBATEGFMODBMMCBDL GVODUJPO 1BTTJ
UJPOQPIJOUFSEJTBCMFTUIF SFHJTUFSFEDBMMCBDL GVODUJPO

51lF SFHITUFSFEDBMMCBDLSG\DAPUO®RS FIBWP QBB IT Z
JUIWFPGUIFHFPNFUSZUIBUJOUFSTFDUTUIFDPSSFTQPOEJOHQPJOURVFSZ|
DBMMCBDL GVOITU3IROQRWGEXHBQ¥BIFWLIRQBTTFE B OVNCFS PG
BSHVNFOUT UISRERLAQWFXHU\)XQFWLRQBU SXMPBIQWSF 5I1F
TXHURCKFDU JT UIF PSJHJOBM QPJOSWIRDVIFSIORCKFBY QBTTFE JOUP
uswlT BOBSCJUSBSZ QPJOUFS UP QBTT JOQVU JOUP BOE TUPSF SFTVMUT PG U
GVODUJBOLKBUHRP BOERQWHMFFUD*OJU1IPJOUBWPRSZ$SPOUFYU
EFUBJMT DBOCFVTFEUPJEFOUJGZUIFHFPNFUSZEBUBPG UIFQSJNJUJIJWF

, 1## HSHLHA-1# jmi

" 57&3RLQW4XHU\)XDBWLBMTP CF QBTTFE EJSFDUMZ BT BO BSHVNFOU UP
SUD1PJOUDMWHSZDBTFUIFDBMMCBDLJT JOWPLFEGPSBMMQSJIJNJUJWFT JO UIF
UIBUJOUFSTFDUUIF RVFSZEPNBJO *GBDBMMCBDL GVODUJPOJT QBTTFE BT I
UBUD1IPJOBRBQEFBAOPUFOUJBMMZ EJGGFSFOU DBMMCBDL GVODUJPO JT TFU GF
PNFUSZSXUUIN4FU(FPNFUSZ1PJGCBRYVBEPSB8HMMOBDUIRBK¥ODUJPOTBSFJO
WPLFEBOEUIFDBMMCBDHUDME D OXNRPNONOEH DBEMMAFFE CFGPSF UIF
HFPNFUSZTQFDJGJD DBMMCBDL GVODUJPO

*GJOTUBODJOHJT VVEEOUDB B SEDBOBY FT XIFUIFS UIF
DVSSFOUJOTUBODF USBOTGPSNFRPNHPBIN BNTHOIUNBSUIFZTUBDL JO
USBOTGPSNBUJPO PS OPU 4JNJMBSJUZ USBOTGPSNBUJPOT BSFDPNQPTFE P
SPUBUJPOBOE VOJGPSN TDBMJOH BOE JG B NBUSJY . EFGJOFT B TIJNJMBSJUZ |
UJPO UIFSFJTBTDBMJOH GBDUPS % TVDIUIBU GPSBMMY Z EJTU .Y .Z %
Z *OUIJTDBTF UVYFIOBBNWRWRBJIJT TDBMJOH GBDUPS % BOE PUIFS
XIJTFJUJT "WBMJE VUNUMBEWUeA D BBINIFPXT UP DPNQVUF
EJTUBODFJOGPSNBUJPOJOJOTUBODF TQBDFBOE TDBMF UIF EJTUBODFT JOU
GPS FYBNQMF UP VQEBUF UIF RVFSZ SBEJVT TFF CFMPX CZ EJWJEJOH UIF J
TQBDFEJTUBODF XJUIUIF TINJMBSJUZ TDBMF *GUIFDVSSFOUJOTUBODF USB
BTINIJMBSJUZVUSIBDXODTGW\SKNDOH UIF EJTUBODF DPNQVUBUJPO IBT
UPCF QFSGPSNFE JO XPSMETQBDF UP FOTVSF DPSSFDUOFTT *OUIJTDBTF Ul
UP XPSME USBOTGPSNBUWaZROHTMBWWD CBWITEFEFUP USBOTGPSN
UIFQSINJUJWF EBUB JOUP XPSME TQBDF OUIFSXJTF UIFRVFSZMPDBUJPODB
GPSNFEJOUPJOTUBODF TQBDF XI1JDIDBO CF NPSFFGGJDJFOU *G UIFSFJT OF
USBOTGPSN UIFTINJMBSJUZ TDBMFJT

5|[F DBMMCBDL GVODUJPO XJMM QPUFOUJBMMZ CF DBMMFE GPS QSJINJUJWHF
RVFSZ EPNBJO GPS UXP SFBTPOT 'JSTU UIF DBMMCBDL JT JOWPLFE GPS BMM
JOTJEFB#7) MFBG OPEFTJODFOPHFPNFUSZEBUBPG QSIJNJUJIJWFTJT EFUFSNJ
OBMMZ BOE UIFSFGPSFJOEJWJEVBM QSIJNJUJWFT BSF OPUDVMMFE POMZ UIF
CPVOEJOH CPYFT 4FDPOE JODBTF OPO TIJNJMBSJUZ USBOTGPSNBUJPOT BS
SFTVMUJOHFMMJQTPJEBMRVFSZEPNBJO JOJOTUBODFTQBDF JTBQQSPYJNE
BMIJHOFECPVOEJOHCPY JOUFSOBMMZBOE UIFSFGPSFJOOFS OPEFTUIBUEPC
UIFPSIJHJOBM EPNBJO NJHIU JOUFSTFDU UIFBQQSPYJNBUJWF CPVOEJOH CPY
TVMUT JO VOOFDFTTBSZDBMMCBDLT *OBOZDBTF UIFDBMMCBDLT BSFDPOTF
BQSIJINJUIJWFJTJOTIJEFUIFRVFSZEPNBJOBDBMMCBDL XJMMCFJOWPLFE CVU
JTOPUOFDFTTBSJMZ USVF

'PSFGGJDJFODZ UKHSBEKNOWGBIOKFEFDSFBTFE JOXPSMETQBDF
JOTJEFUIFDBMMCBDLGVODUJPOUPJIJNQSPWFDVMMIJOHPGHFPNFUSZEVSJOH
*GUIFRVFSZSBEJVTXBTVQEBUFE UIF BXMOBDYBVODUJPOTIPVME SFUVSO
BOVQEBUFPGJOUFSOBMUSBWFSTBM JOGPSNBUJPO *ODSFBTJOH UIF SBEJV"
UIFUINFPSQPTJUJPOPGUIFRVFSZSFTVMUTJO VOEFGJOFE CFIBWJPVS

8JUIJO UIF DBMMCBDL GVODBWIIPPJIJINRABFB GRS HYBMM
BNQMF XIFOJNQMFNFOUJOH JOTUBODJOH NBOVBMMZ *OUIJTDBTFUIFJOTUB
GPSNBUJPO TIPVME CF QVTFREWIDMRAIFA XBOYM JOUFSOBMMZ
DPNQVUFUIFQPJOURVFSZJOGPSNBUJPOJOJOTUBODFTQBDFVTJOHUIFUPQ
UIF TUBFRQWGXW SUD1PJOURMBBEKIFE

'PSBSFGFSFODFJIJNQMFNFOUBUJPOPGBDMPTFTUQPJOUUSBWFSTBMPGUS
VTJOHJOTUBODJOHBOE VTFSEFGJOFEJOTUBODJOHTFFUIFUVUPSJIBM <$MPT

SUD1PJOBRDPESZU1IPJOU2VFSZ$POUFYU

. 1## HOHLH-1# jmj

p;pjl3! #3 #6(!'# 5-13(.- .(-3#1

UWF*HW6<&/'HYLFH)XQFWLRQ3RLQWHU REWDLQV D GHYLFH VLGH
IXQFWLRQ SRUGWWRIPH 6<&/ IXQFWLRQ

LOFOXGHPEUHH UWFRUH K!

WHPSO DXMWR
LQOLQ@HFOW)YSHIWF*HW6<&/'HYLFH)XQFWLRQ3RLQWHU VI\FO TXHXH TXHXH

51JT GVODUJPO SFUVSOT B EFWJDF TJIEF GVODUJPO QPJOUFS GPS TPNF GVOD
GVODUJPO " NVTU CF ERGEB<E/NTIOH U4B&S/BWh/(
USJCVUF F H

57&B6<&/B,1',5(&7/<B&$/Ra/GLOWHU
FRQVBEZ7&)LOWHU)XQFWLRQ1$UIJXPHQWY DUJV ~»

57&)LOWHU)XQFWLRQ1 ISWU UWF*HW6<&/'HYLFH)XQFWLRQ3RLQWHU ILOWHU! TXHXH

4VDIBEFWJIJDFTIJEFGVODUJPO QPJOUFSTPGTPNFGIJMUFS DBMMCBDLTDBO
UPBHFPNFUSEAWAHONMHMWRPHWU\,QWHUVHFW) BADMEBAWEF)XQFWLRQ
BHW*HRPHWU\2FFOXGHG)LOWHUGNECFWWUARBO T

'VSUIFS EFWJIJDFTJEFGVODUJPO QPJOUFSTGPSVTFSHFPNFUSZDBMMCBDL
TIHOFE UP HFPNF WSFBEHWTHRPH W UK, QWHU V IBFOMBXE FWLR Q
6HW*HRPHWU\2FFOXGHG) X QBN

5IFTFHFPNFUSZ WFSTJPOT PG UIFDBMMCBDL GVODUJPOT BSF EJTBCMFE JC
EFGBVMU BOE XFSFDPNNFOE OPUVTJOHUIFNGPS QFSGPSNBODF SFBTPOT

00O GBIJMVSFBOFSSPSDPEFJT TROWHIBW'BBIOFERUBRESIFE VTJOH

SUD4FU(FPNFUSZ*OBRPPBFDYFWPONFBFUSZOD BMPVPEFEH'\WODUJPO
PNFUSZ*OUFSTFDSUMAMARS'VRONDRUUISPLDODDMVEFE'IJMUFS'VODUJPO

1## HSHLHA-1# jmk

p;pkl13! #3 #.,#319 -23 -1#" 1#-#

UWF6HW*HRPHWU\,QVWDQFHG6FHQH VHWY WKH LQVWDQFHG VFHQH RI
DQ LQVWDQFH JHRPHWU\

LOFOXGHPEUHH UWFRUH K!

YRL&WF6HW*HRPHWU\,QVWDQFHG6FHQH
57&*HRPHWU\ JHRPHWU\
57&6FHQH VFHQH

5lFAUWF6HW*HRPHWU\, QVWEQMOBURHPEHTFUT UIFVIFBIOBBODFE TDFOF
BSHVNFOU PG UIFTQFDJGIWHRBOVBBBIYDNFEBBPNFUSZ

00 GBIJMVSFBOFSSPSDPEFJT TRUWWBFBW' BBIOFERBRNESIFE VTIJOH

355@(&0.&53:@5:1&@*BABDAFRRI (FPNFUSZ5SBOTGPSN

, 1## HSHLHA-1# iml

p;pl 13! #3 #.,#319 -23 -I#" 1 #-#2

UWF6HW*HRPHWU\,QVWDQFHG6FHQHY VHWV DQ DUUD\ RI VFHQHV WKDW FDQ EH
LQVWDQFHG E\ DQ LQVWDQFH DUUD\ JHRPHWU\

LOFOXGHPEUHH UWFRUH K!

YRLEWF6HW*HRPHWU\,QVWDQFHG6FHQHYV
57&*HRPHWU\ JHRPHWU\
57&6FHQH VFHQH
VLIHB@XPG6FHQHYV

5FUWF6HW*HRPHWU\,QVWD GRHGB IRV TFUT BGB7BRSSBZ PG UZQF
6FHQXJWXP6FHEHWMVFNFOUT UIBU UIF TQFDJGJIHFREPHOTUBODF HFPNFUSZ
WUBSHVNFOU DBOJOTUBODF S51JTDBMMBMTP SFRVIJISFTTFUUJOHBO JOEFY C
FIUUBPS6HWEKDUHG*HRPHWY® WH6IHML HZ*HRPHW UNSHGNXIIMB S

UP JOEFY CVGGFST GPS USJBOHMF NFTIFT UIBU TQFDJGJFT XIJDI JOTUBODTF
TUBODFBSSBZJOTUBODFT XIJDITDFOFJO UIF TDFOFBSSBZ *GPOMZPOF TDF
CFJIJOTUBODB®WHRSHFW BRPH WU\, QVWOQPNMBEKFHQSFGFSSFE

00 GBIJMVSFBO FSSPSDPEFJT TRWSIBW'BBIOFERUBRESIFE VTJOH

358@(&0.&53:@5:1&@*/45"/$RXBD'BBU/FX(FPNFIUBZ#VGGFS
4FU4IBSFE(FPNPBW®»AAIGBEFSFUSZ*OTUBODFE4DFOF

, 1## HSHLHA-1# jmm

p;pmL3! #3 #.,#319 1 -2%$.1,

UWF6HW*HRPHWU\7UDQVIRUP VHWYV WKHRWDDSDURWULFRWDEBEQ
WLPH VWHS RI DQ LQVWDQFH JHRPHWU\

LOFOXGHPEUHH UWFRUH K!

YRL®WF6HW*HRPHWU\7UDQVIRUP
57&*HRPHWU\ JHRPHWU\
XQVLIQHGWLPHB6WHS
HQXB7&)RUPDW IRUPDW
FRQVMORDWIP

5IFUWF6HW*HRPHWU\7 (DODRWPPO TFUT UIF MPDBM UP XPSME BGGJOF USBOT
GPSNBUROBSBNFUFS PG BO JOJHRPG NEBISBRANUFSZ GPS B
QBSUJDVMB & IURHSFQOESSBNFUFS 5IF USBOTGPSNBUJPO JTTQFDJGJFE BT B

— NBUSJY — MJOFBSUSBOTGPSNBUJPOQMVTUSBOTMBUJPO GPS XIJDIUI
GPSNBRUFPDQBSBNFUFS BSF TVQQPSUFE

&57&B)250%$7B)/2%$7 ; B52:B0%FE5 — GMPBU NBUSJY JT MBJE PVU JO
SPX NBKPS GPSN

&57&B)250%$7B)/2%$7 ; B&2/801B9KF25— GMPBU NBUSJY JT MBJE PVU
JODPMVNO NBKPS GPSN

857&B)250%$7B)/2%$7 ; B&2/801B0I$25- GMPBUNBUSJYJTMBJEPVUJO
DPMVNO NBKPSGPSNBTB — IPNPHFOFPVT NBUSJY XJUIUIFMBTU SPXCFJ
FRVBM UP

00 GBIJMVSFBOFSSPSDPEFJT TRWSIBW'BBIO-BRBRNESIFE VTJOH

355@(&0.&53:@5:1&@*/45"/$&

, 1## HSHLHA-1# jimn

p;pnl13! #3 #.,#319 1 -2%$.1, 5 3#1-(.-

UWF6HW*HRPHWU\7UDQVIRUP4XDWHUQLRQ VHWVRWRHSNWWRVXRDRDWLRQ
WLPH VWHS RI DQ LQVWDQFH JHRPHWU\ DV D GHFRPSRVLWLRQ RI WKH
WUDQVIRUPDWLRQXRDWINDPWHUQLRQV WR UHSUHVHQW WKH URWDWLRQ

LOFOXGHPEUHH UWFRUH K!

YRL®WF6HW*HRPHWU\7UDQVIRUP4XDWHUQLRQ
57&*HRPHWU\ JHRPHWU\
XQVLIJQHGWLPH6WHS
FROVWWUXBW&4XDWHUQLRQ'HFRPSRVLWLRQ TG

S5IFUWF6HW*HRPHWU\7UDQVIRUBMOWHUIRORQFUT UIF MPDBM UP XPSME
BGGJOF USBOTC®BSNBBFIFG PG BO JOTWBRAHWRBIFPNFUSZ
SBNFUFS GPS B QBSWILPYWRBSYBNFURIQ 5IF USBOTGPSNBUJPO
JTTQFDJGIBEWBBU-SOIJPO% FRIRNDQ PT BEIFPIOPNQPTIJUJPO PG BO

BGGJOFUSBOTGPSNBUJPOUIBUSFQSFTFOUTUIFSPUBUJPOBMDPNQPOFOUPG
GPSNBUJPOBTBRVBUFSOJPO 51JTBMMPXTJOUFSQPMBUJOH SPUBUJPOBM U¢
FYBDUMZVTJOH TQIFSIJDBM MJOFBS JOUFSQPMBUJPO TVDIBTBUVSOJOH XIFF

'"PSNPSFJOGPSNBUJPO BCPVBIiHEF\EFDPNRIPTOIWEPONGP
TIJUJIPIGF RVBUFSOJPOSHAWPWHOQURR'HFRPERSVWURE I MM
CFOPSNBMJ[FEJOUFSOBMMZ

'PS DPSSFDU SFTVMUT UIFUSBOTGPSNBUJPO NBUSJDFT GPS BMM UJNF TUI

TFU FIJUIFSBWFBHWHHRPHWU\7 DY WIRAHPW *HRPHWU\7UDQVIRU

PAXDWHUQLR¥JOH CPUI SFQSFTFOUBUJPOT JT OPU BMMPXFE 4QIFSJDBM MJO
JOUFSQPMBUJPO XJMM CF VTFE JGG UIF UBEHMGPSNBUJPO NBUJ[FT BSF TFU)

*HRPHWU\7UDQVIRUP4XDWHUQLRQ
'PSBOFYBNQMF PG UIJT G FBWBASHSIGFIF DI FPUWN B B SHINBWIS

00 GBIJMVSFBO FSSPSDPEFJT TRUWWBFBW' BBIOFERBNESIFE VTIJOH

SUD*OJU2VBUFSOJPIOPPHEPRNEMNFHUSRP®OSBOTGPSN

, 1## HSHLHA-1# jmo

p;pol3! #3 #.,#319 1 -2%$.1,

UWF*HW*HRPHWU\7UDQVIRUP UHWXUQV WKH LQWHUSRODWHG LQVWDQFH
WUDQVIRUPDWUW®H VSHFLILHG WLPH

LOFOXGHPEUHH UWFRUH K!

YRLEWF*HW*HRPHWU\7UDQVIRUP
57&*HRPHWU\ JHRPHWU\
IORDWLPH
HQXB7&)RUPDW IRUPDW
YRLG[IP

SITRUWF*HW*HRPHWU\7 B\ DRWPPO SFUVSOTUIFJOUFSQPMBUFEMPDBMUP XPSME
USBOTGPERBBSBOFUFS PG BO JOJHRPG MBEBFSBRANRIFSZ
GPSBQBSUMWMMABSBNRNBFID SBOHFTQFDJGRFE GPSNBU

PDWBSBNFUFS
IPTTIJCMF GPSNBUT GPS UIF SFUVSOFE NBUSJY BSF

&57&B)250%$7B)/2%$7 ; B52:B0%FE5 — GMPBU NBUSJY JT MBJE PVU JO
SPX NBKPS GPSN

&57&B)250%$7B)/2%$7 ; B&2/801B9KF25— GMPBU NBUSJY JT MBJE PVU
JODPMVNO NBKPS GPSN

&57&B)250$7B)/2%$7 ; B&2/801B9KF25— GMPBU NBUSJY JT MBJE PVU
JODPMVNO NBKPS GPSNBTB — IPNPHFOFPVT NBUSJY XJUI MBTU SPX FRV

UpP

51JT GVODUJPOJT TVQQPTFEUP CF VTFE EVSJOH SFOEFSJOH CVUPOMZ TV
PO UIF $16 BOE OPUJOTJEF 4:$- LFSOFMT PO UIF (16 *OTJEF B 4:$- LFSOFM UIF
UWF*HW*HRPHWU\7UDQVIRUWPYORPBIRQH BT UP HFU VTFE

00 GBIJMVSFBO FSSPSDPEFJT TRWSIBW'BBIOFEBFRWBRNESIFE VTJOH

35$@(&0.8&53:@5:1& @ *BABDMSREU (FPNF U SZ5B BRUTE PN R
USZ5SBOTGPSN'SPN4DFOF

. 1## HOHLH-1# jmp

p;ppl3! #3 #.,#319 1 -2%$.1, 8

UWF*HW*HRPHWU\7UDQVIRUP (] UHWXUQV WKH LQWHUSRODWHG LQVWDQFH
WUDQVIRUPDWUBQ LQVWDQFH RI DQ LQVWDQFH DURDWKHRPHWU\
VSHFLILHG WLPH

LOFOXGHPEUHH UWFRUH K!

YRLWF*HW*HRPHWU\7UDQVIRUP (]
57&*HRPHWU\ JHRPHWU\
XQVLIJQHGW.QVW3ULP,'
IORDWLPH
HQXB7&)RUPDW IRUPDW
YRLG[IP

5FUWF*HW*HRPHWU\7UDQ@VIRRDBPJPO SFUVSOT UIF JOUFSQPMBUFE MPDBM UP
XPSME USBO TGPGENBBNPOF SQPG3ULEI JOTUBODF PG BO JO

TUBODF BSSBZHRPRMEBRSENFUFS GPS B @BSRBI®B/MBS UIJNF

FUFS JO[BBOXFUIF TQFDJGBRBEDMBSBRBBUFS 5F GVODUJPO

DBOBMTP CF YVHRFHYWWRGFST UP B SFHVMBS JOOMWBODF CVUUIFO UIF
3ULP,IBTUBCF

. 1## HOHLH-1# jmq

p;pql3! #3 #.,#319 1 -2%.1, 1., '#-#

UWF*HW*HRPHWU\7UDQVIRUP)URP6FHQH UHWXUQV WKH LQWHUSRODWHG LQVWDQFH
WUDQVIRUPDWUWR®H VSHFLILHG WLPH

LOFOXGHPEUHH UWFRUH K!

YRLWF*HW*HRPHWU\7UDQVIRUP)URP6FHQH
57&6FHQH VFHQH
XQVLIJQHGWHRP,'
IORDWLPH
HQXB7&)RUPDW IRUPDW
YRLG[IP

5IFUWF*HW*HRPHWU\7UDQVIRGPORPBFROBFUVSOTUIFJOUFSQPMBUFE MP
DBMUP XPSME US$P@®VERYNBRIPENFUFS PGBOJOTUBODFHFPNFUSZTQED
JGIJFECZ JUT HRARYFUBSYBNFUFS REHRFBFBNFUFS GPS B
QBSUJDVMBSABEBNFUF J0JXp SBAQHF TQFDJGABEDGP SNBU
QBSBNFUFS

1IPTTJCMF GPSNBUT GPS UIF SFUVSOFE NBUSJY BSF

857&B)250%$7B)/2%$7 ; B52:B0%FE5 — GMPBU NBUSJY JT MBJE PVU JO
SPX NBKPS GPSN

&57&B)250%$7B)/2%$7 ; B&2/801B9kF25— GMPBU NBUSJY JT MBJE PVU
JODPMVNO NBKPS GPSN

&57&B)250%$7B)/2%$7 ; B&2/801BIF25— GMPBU NBUSJY JT MBJE PVU
JODPMVNO NBKPS GPSNBTB — IPNPHFOFPVT NBUSJY XJUI MBTU SPX FRV
UpP

*O D P OUSBUWFYHPWI HR P HW U\ 7 UDQQ DRWIAPVOF “Hi W H R P H
WU\7UDQVIRUP)URPYOHRWIPO DBOHFUVTFE EVSJOH SFOEFSJOHJOTJEF B 4:$-
LFSOFM

00 GBIJMVSFBOFSSPSDPEFJT TRUWSFBW BBIOFERBRESIFE VTIJOH

35$@(&0.&53: @5:1& @ *BABD AU (FPNF U SZBB BRUTE P B R
USZ5SBOTGPSN

, 1## HSHLHA-1# imr

p;prl3! #3 #.,#319 #22#++ 3(.- 3#

UWF6HW*HRPHWU\7HVVHOODWLRQ5DWH VHWYV WKH WHVVHOODWLRQ UDWH RI WKH
JHRPHWU\

LOFOXGHPEUHH UWFRUH K!

YRL®WF6HW*HRPHWU\7HVVHOODWLRQ5DWH
57&*HRPHWU\ JHRPHWU\
IORDWHVVHOODWLRQS5DWH

5lAWWF6HW*HRPHWU\7HVVHODOWOWWDRJIPOOVHFUT UITFWHRATTFMMBUJPO SBUF
VHOODWLR@PMWWNFOU GPS UIF TQEBDREGRIWBEBS HFRRPUS Z

S5 IFUFTTFMMBUJPO SBUF DBO POMZCFTFU GPS GMBU DVSWFTBOE TVCEJWJTJ
'PS DVSWFT UIFUFTTFMMBUJPO SBUF TQFDJGJFT UIF OVNCFS PG SBZ GBDJO
DVSWFTFHNFOU 'PSTVCEJWIJTJPO TVSGBDFT UIFUFTTFMMBUJPO SBUF TQFD
CFSPGRVBETBMPOHFBDI FEHF

00 GBIJIMVSFBOFSSPSDPEFJT TRUWSFBW' BBIOFERBRESIFE VTIJOH

353@(&0.&53:@5:1& @3S @M&0.&53:@5:1&@46#%*7*4*0/

, 1## HSHLHA-1# jni

p;qi 13! #3 #.,#319 ./.+.&9 .5-3

UWF6HW*HRPHWU\7RSRORJ\&RXQW VHWYV WKH QXPEHU RI WRSRORJLHV RI
D VXEGLYLVLRQ JHRPHWU\

LOFOXGHPEUHH UWFRUH K!

YRLWF6HW*HRPHWU\7RSRORJ\&RXQW
57&*HRPHWU\ JHRPHWU\
XQVLIJQHGWRSRORJ\&RXQW

51FUWF6HW*HRPHWU\7RSRONOQO®RXIPWD TFUT UIF OVNCFS PG UPQPMPHJFT
WRSRORJ\GQBOSBNFUFS GPS UIF TQFDJGJFHERPYE®EUWITIPO HFPNFUSZ
QBSBNFUFS 5IFOVNCFSPGUPQPMPHJFTPGBTVCEJWJTJPOHFPNFUSZNVTU ¢
PSFRVBM UP

5P VTF NVMUJQMF UPQPMPHJFT GJSTUUIF OVNCFS PG UPQPMPHJFTNVTU CH
UIFO UIF JOEJWJEVBM UPQPMPHJFTFBBO*ERPDIRO GXEVSFE VTJOH
GLYLVLRQ®RBGECZ TFUUJOH BE73OEHY(EM/GHBSVTJOH
UIFUPQPMPHZ *% BTUIFCVGGFS TMPU

00 GBIJMVSFBO FSSPSDPEFJT TRWSIBW'BBIOFERUBRESIFE VTJOH

35$@(&0.&53:@5:1&@46HBWDM4BYIFPNFUSZ4VCEIJWITJIPO.PEF

. 1## HOHLH-1# jnj

p;qj13! #3 #.,#319 5 "(6(2(.- ."#

UWF6HW*HRPHWU\6XEGLYLVLRQORGH VHWYV WKH VXEGLYLVLRQ PRGH
RI' D VXEGLYLVLRQ JHRPHWU\

LOFOXGHPEUHH UWFRUH K!

YRLWF6HW*HRPHWU\6XEGLYLVLRQORGH
57&*HRPHWU\ JHRPHWU\
XQVLIJQHGWRSRORJ\,'
HQXB7&B6XEGLYLVLRQORGH PRGH

5FUWF6HW*HRPHWU\6XEGLYAVORRWRBEO® TFUT UIF TVCEJWJTJPO NPEF
PRGEBSBNFUFS GPSWHSERORQEEBVOBINAUFS PG UIFTQFDJGJFETVC

EIWITIPO HRRREFWMIBS BNFUFS
SIFTVCEJWJTJPO NPEFT DBO CF VTFE UP GPSDF MJOFBS JOUFSQPMBUJPO G

QBSUTPGUIFTVCEJWJTJPO NFTI

&57&B68%',9,6,21B02'(B12B%28PV¥YEXEBSZ QBUDIFT BSF JHOPSFE
51T XBZFBDI SFOEFSFEQBUDIIBTBGVMMTFUPGDPOUSPM WFSUJDFT

&57&B68%',9,6,21B02'(B60227+B%2BR'$FRVFODF PG CPVOEBSZ
DPOUSPM QPJOUTBSFVTFEUPHFOFSBUFB TNPPUI# TQMJOF CPVOEBSZ DV

GBVMU NPEF

&®578&B68%',9,6,21B02'(B3,1B&25RP&GOFS WFSUJDFT BSF QJOOFE UP
UIFJSMPDBUJPO EVSJOH TVCEJWJTJPO

®e57&B68%',9,6,21B02'(B3,1B%28MMSWFSUJDFT BU UIF CPSEFS BSF
QJOOFEUPUIFJS MPDBUJPO EVSJOH TVCEJWJTJPO 51JT XBZUIF CPVOEBS
UFSQPMBUFE MJOFBSMZ S5IJT NPEFJTUZQJDBMMZ VTFE GPS UFYUVSJOH U
UFYFMTBUUIFCPSEFSPGUIFUFYUVSFUPUIF NFTI

%57&B68%',9,6,21B02'(B3,1'B8M WFSUJDFT BU UIF CPSEFS BSF QJOOFE
UP UIFJS MPDBUJPO EVSJOH TVCEJWJTJPO 51JT XBZBMM QBUDIFT BSF MJ(
UFSQPMBUFE

00O GBIJMVSFBOFSSPSDPEFJT TROWSIBW'BBIOFERUBRESIFE VTJOH

35$@(&0.&53:@5:1&@46#%*7*4*0/

, 1## HSHLHA-1# ink

p;qk13! #3 #.,#319 #13#8 331(53# ./.+.&9

UWF6HW*HRPHWU\9HUWH[$WWULEXWH7RSRORJ\ ELQGV D YHUWH][
DWWULEXWH WR D WRSRORJ\ RI WKH JHRPHWU\

LOFOXGHPEUHH UWFRUH K!

YRLWF6HW*HRPHWU\OHUWH[$SWWULEXWH7RSRORJ\
57&*HRPHWU\ JHRPHWU\
XQVLIJQHGWHUWH[$SWWULEXWH,"
XQVLIJQHGWRSRORJ\,'

5FUWF6HW*HRPHWU\9HUWH[$WWUGBXOWMHIRBRORIOET B WFSUFY BU
USJCVUF CVY 6 GWFIHIWMWPUL BOWI/ NFOU UP B/ RIFPRDRNMP'HZ
BSHVNFOU GPS UIF TQFDJGJFHRNCVBEWMYNRP@UHFPNBEOS Z
EBSE WFSUFY CVGGFST BSFBMXBZT CPVOE UP UIF EFGBVMU UPQPMPHZ UPQF
DBOOPUCFCPVOE EJGGFSFOUMZ "WFSUFYBUUSJCVUF CVGGFS BMXBZT VTFT
JUJT CPVOE UP X1 RWV¥ JQVMEHLG RIOBEW A, QW H U S RID B M M1T

"UPQPMPHZRPOTIWUT PGB TVCEJIJWJTUIWFB INPEF TFU UISPVHI
RPHWU\6XEGLYLVIBRQOERAHF JOEFY CVGGFS CPVOELUP UIFJOEFY CVGGFS TMPU
51JT JOEFY CVGGFS DBOBTTJHO JOEJDFT GPS FBDI GBDF PG UIF TVCEJWJTJPC
UlBUBSFEJGGFSFOU UP UIFJOEJDFT PG UIFEFGBVMUUPQPMPHZ 5IFTF OFX |
GPSFYBNQMFCFVTFEUPJOUSPEVDFBEEJUJPOBMCPSEFSTJOUPUIFTVCEJW.
NBQ NVMUJQMF UFYUVSFT POUP POFTVCEIJWJTIJPOHFPNFUSZ

00O GBIJMVSFBO FSSPSDPEFJT TROUWHIBW'BBIOFERUBRESIFE VTJOH

SUD4FU(FPNFUSZ4VEEDWITBBQIPANBEBUIS QP MBUF/

, 1## HSHLHA-1# inl

p:ql 13! #3 #.,#319 (2/+ !#,#-3 5-13(.-

UWF6HW*HRPHWU\V'LVSODFHPHQW)XQFWLRQ VHWV WKH GLVSODFHPHQW IXQFWLRQ
IRUD VXEGLYLVLRQ JHRPHWU\

LOFOXGHPEUHH UWFRUH K!

VWUXBWE& ' LVSODFHPHQW)XQFWLRQ1$UJXPHQWYV
N
YRLGJHRPHWU\8VHU3WU
57&*HRPHWU\ JHRPHWU\
XQVLIJQHGWSULP,'
XQVLIQHGWLPHB6WHS
FRQ VM R D WK
FRQVM RDW
FRQVMORDWJB]
FRQVMORDW JB\
FRQVMORDW JB]
IORDVWBB]
IORDWS B\
IORDVBB]
XQVLJQHGW

W\SHGNRLG 57&'LVSODFHPHQW)XQFWLRQ1
FROQVWWUXBW&'LVSODFHPHQW)XQFWLRQ1$UJXPHQWY DUJV

YRLOEWFE6HW*HRPHWU\V'LVSODFHPHQW)XQFWLRQ
57&*HRPHWU\ JHRPHWU\
57&'LVSODFHPHQW)XQFWLRQ1 GLVSODFHPHQW

5IFUWF6HW*HRPHWU\'LVSODFHPEG®PXOFRVQBSFHITUFSTBEJTQMBDFENFOU
DBMMCBDLGEVODFHBBHWVNFOU GPSUIF TQFDJGJFE TVCEJWJTJPO HFPN
FUSBRPHWWBHVNFOU

0OOMZ B TJOHMF DBMMCBDL GVODUJPO DBO CF SFHJTUFSFE QFS HFPNFUSZ E
JOWPDBUJPOTPWFSXSJUFUIF QSFWJPVSIMBZ TGAUUWOIDBMMCBDL GVODUJPO 1BTTJ
UJPO QPJOUFS EJTBCMFT UIF SFHJTUFSFEDBMMCBDL GVODUJPO

5/F SFHJTUFSFE EJTQMBDFNFOU DBMMCBDL GVODUJPO JTJOWPLFE UP EJTQ
PO UIF TVCEJWJTJPO HFPNFUSZ EVSJOH TQBUJBM BDDFMFSBUJPO TUSVDUVSF
EVSJOHWHERPPLWBRBH\M

5IFDBMMCBDL G\50& UJSPAEDR GAHOWF XFWQWPL FE XJUI B
OVNCFSPGBSHVNFOUTRUPASOD 5 OPFTHEF)MQFWLRQLI$SUIXPHQWYV
TUSVDUVSF 5IF QSPWJEFE VTFS E BUBFRMRUOL/HS PVGUUIF HFPNFUSZ
NFNCFS DBO CFVTFE UP QPJOU UP UIFBQQMJDBUJPOYT SFQSFTFOUBUJPO PG
TIPONFTI "QPBGCFSIOUT UPEJTQMBDFBSFTQFDJGJFEJOB T TUSVDUVSFPGBS:
MBZPVU 'PS FBDIQPJOU UP EJTQMBDF XBPEBSDBM QBUDI 67 DPPSEJOBUFT
SBZT UIF OPSNBMJ[FE HMBPNBUBADRABNBBLZT BOE UIF
QPTJWBBPI®B\ BBB|BSSBZT BSF QSPWJEFE 5IF UBTL PG UIFEJTQMBDFENFOU
GVODUJPOJTUPVTFUIJTJOGPSNBUJPO BOEDIBOHFUIFQPTJUJPO EBUB

, 1## HSHLHA-1# jnm

5|F HFPNFUSZHROEWIRNCFS BOE QSISNURJNWNR *%
CFS PG UIFQBUDIUP EJTQMBDF BSFBEEJUJPOBMMZ QSPWJEFE BT XFMM BT U
WLPH6WNSEIDI DBO CF JNQPSUBOU JG UIF EJTQMBDFNFOU JT UJNF EFQFOEFOU I
NPUJPO CMVSJTVTFE

"MM QBTTFEBSSBZT NVTUCFBMJHOFE UP CZUFTBOE QSPQFSMZ QBEEFE U
XJEF WFDUPS QSPDFTTJOHJOTJEFUIFEJTQMBDFNFOU GVODUJPO FBTIMZ QPT

"MTP TFF WITRSVWBMFNFOG®RE BNOFRYSBENQMF PG IPX UP VTF UIF
EJTQMBDFNFOUNBQQJOH GVODUJPOT

00 GBIJMVSFBO FSSPSDPEFJT TRWSIBW'BBIO-EBRBRESIFE VTJOH

358@(&0.&53:@5:1&@46#%*7*4*0/

, 1## HSHLHA-1# jnn

p;gml3! #3 #.,#319 (123 +3$ "&#

UWF*HW*HRPHWU\)LUVW+DOI(GJH UHWXUQV WKH ILUVW KDOI HGJH RI D IDFH

LOFOXGHPEUHH UWFRUH K!

XQVLIQHGWWF*HW*HRPHWU\)LUVW+DOI(GJH
57&*HRPHWU\ JHRPHWU\
XQVLIQHG@GWDFH,'

5lFUWF*HW*HRPHWU\)LUVVGADODBIRPO SFUVSOT UIF *% PG UIF GJSTU IBMG
FEHFCFMPOHJOH UP UDFHLEBBBYBIFFOBUGBPS JOTUBODF JO UIF GPM
MPXJOHFYBNQMFUIF GJST®HIBMG FEHF PG GBDF

51 JT GVODUJPODBO POMZCFVTFEGPSTVCEJWIJTIJPO HFPNFUSJFT "TBMMU
PGBTVCEJWJTJPO HFPNFUSZ TIBSF UIF TBNF GBDF CVGGFS UIF GVODUJPO EP
QFOEPOUIFUPQPMPHZ *%

JFSFG UPG BSF RVBESJMBUFSBMGBDFT XJUl WFSUJDFTFBDI 5IFFEHFTF
PGUIFTFGBDFTBSFTIPXO XJUIUIFJSPSJFOUBUJPO 'PSFBDIGBDFUIF*% PG U
DPSSFTQPOETUPUIFTMPUTUIFGBDFPDDVQJFTJOUIFJOEFYBSSBZPGUIFHF
BTUIFJOEJDFTPGGBDFG TUBSUBUMPDBUJPO PGUIFJOEFYBSSBZ UIFGJST
F UIFOFYUFEHFF FUD

00 GBIJMVSFBO FSSPSDPEFJT TRWSIBW'BBIOFERUBRESIFE VTJOH

SUD(FU(FPNFUSZ' BUMJFBM BREFSESY(BOFPNFUSZ0QQPTJUF
)BMG&EWF(FU(FPNFUSZ/BYDXEM GEPNFRUSZ1SFWJIPVT)BMG&EHF

, 1## HSHLHA-1# jno

p:qnl3! #3 #.,#319 I#

UWF*HW*HRPHWU\)DFH UHWXUQV WKH IDFH RI VRPH KDOI HGJH

LOFOXGHPEUHH UWFRUH K!

XQVLIQHGWWF*HW*HRPHWU\)DFH
57&*HRPHWU\ JHRPHWU\
XQVLIQHGWGJIH,"

5lFRUWF*HW*HRPHWG&VIOPHUIJPO SFUVSOT UIF*% PG UIF GBDFUIFTQFDJGJFE IBMG
FEHHFGIHBSHVNFOU CFMPOHTUP 'PSJOTUBODF JO UIFGPMMPXJOH FYBNQMF

GBDBEBT SFUVSOFBRIGPS FBE&HET

51 JT GVODUJPODBO POMZCFVTFEGPSTVCEJWIJTIJPO HFPNFUSJFT "TBMMU
PGBTVCEJWJTJPO HFPNFUSZ TIBSF UIF TBNF GBDF CVGGFS UIF GVODUJPO EP

QFOEPOUIFUPQPMPHZ *%

00 GBIJMVSFBO FSSPSDPEFJT TRWSIBW'BBIO-ERUBRESIFE VTJOH

SUD(FU(FPNFUSZ' BUMYyBMEREFSESY(BOEFPNFUSZOQQPTJUF
)BMG&EWF(FU(FPNFUSZ/BYDYEM GRRPINHFUSZ1SFWJIPVT)BMG&EHF

1H## HSHLH-1# inp

p;qol3! #3 #.,#319 #83 +3% "&#

UWF*HW*HRPHWU\1IH[W+DOI(GJH UHWXUQV WKH QH[W KDOI HGJH

LOFOXGHPEUHH UWFRUH K!

XQVLIQHGWWF*HW*HRPHWU\1H[W+DOI(GJH
57&*HRPHWU\ JHRPHWU\
XQVLIQHGWGJIH,"

5FUWF*HW*HRPHWU\1H[WG VM OIDAIHP O SFUVSOT UIF *% PG UIF OFYU IBMG
FEHFPGUIFTQFDHBEIRBEBHWHRFBDMHF 'PSJOTUBODFJOUIFGPMMPXJOH
FYBNQMF UIF OFYW IBMG FEHF PG

51 JT GVODUJPODBO POMZCFVTFEGPSTVCEJWIJTIJPO HFPNFUSJFT "TBMMU
PGBTVCEJWJTJPO HFPNFUSZ TIBSF UIF TBNF GBDF CVGGFS UIF GVODUJPO EP
QFOEPOUIFUPQPMPHZ *%

00 GBIJMVSFBO FSSPSDPEFJT TRWSIBW'BBIO-ERUBRESIFE VTJOH

SUD(FU(FPNFUSZ'BUDJ)BMEREFSISY(BOEFPNFUSZOQQPTJUF
)BMG&EWF(FU(FPNFUSZ/BYDYEM GRRPINHFUSZ1SFWJIPVT)BMG&EHF

1H## HSHLH-1# ing

p;qpl3! #3 #.,#319 1#6(.52 +9$ "&#

UWF*HW*HRPHWU\3UHYLRXV+DOI(GJH UHWXUQV WKH SUHYLRXV KDOI HGJH

LOFOXGHPEUHH UWFRUH K!

XQVLIQHGWWF*HW*HRPHWU\3UHYLRXV+DOI(GJH
57&*HRPHWU\ JHRPHWU\
XQVLIQHGWGJIH,"

5lFUWF*HW*HRPHWU\3UHYLR&SWDDUGRPW SFUVSOT UIF *% PG UIF QSFWJ
PVTIBMG FEHF PG UIF TQE6DHBSHENFMG FEREF JOTUBODF JO UIF
GPMMPXJOHFYBNQMF UIFRQ$SFWIPVT IBMG FEHF PG

51 JT GVODUJPODBO POMZCFVTFEGPSTVCEJWIJTIJPO HFPNFUSJFT "TBMMU
PGBTVCEJWJTJPO HFPNFUSZ TIBSF UIF TBNF GBDF CVGGFS UIF GVODUJPO EP
QFOEPOUIFUPQPMPHZ *%

00 GBIJMVSFBO FSSPSDPEFJT TRWSIBW'BBIO-ERUBRESIFE VTJOH

SUD(FU(FPNFUSZ'BUDJ)BMEREFSISY(BOEFPNFUSZOQQPTJUF
)BMG&EWF(FU(FPNFUSZ/BYDYEM GRRPINHFUSZ1SFWJIPVT)BMG&EHF

, 1## HSHLHA-1# inr

P;qql3! #3 #.,#319 //.2(3# +$ "&#

UWF*HW*HRPHWU\2SSRVLWH+DOI(GJH UHWXUQV WKH RSSRVLWH KDOI HGJH

LOFOXGHPEUHH UWFRUH K!

XQVLIJQHGWWF*HW*HRPHWU\2SSRVLWH+DOI(GJH
57&*HRPHWU\ JHRPHWU\
XQVLIJQHGWRSRORJ\,'

XQVLIQHGWHGJIH,"

S5lRWWF*HW*HRPHWU\2SSRVLEYODUIJIPIB SFUVSOTUIF*% PGUIFPQQPTJUF

IBMG FEHFPGUIFTQRBJS BSHMNW®BEHG UIF TQFDJGIJFEUPQPMPHZ
WRSRORBSHVNFOU 'PSJOTUBODFJOUIFGPMMPXJOHFYBNQMFUIFPQQPTJUF
FEHRPXH

"OPQQPTJUFIBMG FEHF EPFTOPU FYJTUJG UIF TQFDJGJFE IBMG FEHF IBT F
OFJHICPSJOH GBDF PSNPSFUIBO OFJHICPSJOH GBDFT *OUIFTFDBTFT UIFC
KVTUSFUVSOT WIGIRBMBEGHF

513T GVODUJPO DBO POMZ CF VTFE GPS TVCEJWJTJPO HFPNFUSJFT 5IF GVOI
QFOETPOUIFUPQPMPHZBTUIFUPQPMPHJFTPGBTVCEJWJTJPOHFPNFUSZIBW
JOEFYCVGGFSTBTTJHOFE

00 GBIJMVSFBO FSSPSDPEFJT TRWSIBW'BBIOFERUBRESIFE VTJOH

SUD(FU(FPNFUSZ' BUMJFBM BREFSESY(BOFPNFUSZ0QQPTJUF
)BMG&EWF(FU(FPNFUSZ/BYDXEM GEPNFRUSZ1SFWJIPVT)BMG&EHF

, 1## HSHLHA-1# joi

p;qr13! -3#1/.+ 3#

UWF, QWHUSRODWH LOWHUSRODWHY YHUWH[DWWULEXWHV

LOFOXGHPEUHH UWFRUH K!

VWUXBW&, QWHUSRODWHS$UJIXPHQWYV
N
57&*HRPHWU\ JHRPHWU\
XQVLIJQHGWSULP,'
IORDW
IORDW
HQXB7&%XIIHU7\SH EXIIHU7\SH
XQVLJQHGVEXIIHUBORW
IORDWB
IORDWG 3G X
IORDWG3GY
IORDWG G3GXG X
IORDWGG3GYGY
IORDWEG3GXGY
XQVLIJQHGWDOXH&RXQW

YRL&WF,QWHUSRODWH
FROVWWUXBW&, QWHUSRODWHS$SUIXPHQWY DUJV

5 WUWWF,QWHUSRBYDWHJIPO TNPPUIMZJOUFSQPMBUFTQFS WFSUFYEBUBPWFSUIF
PNFUSZ 51JTJOUFSQPMBUJPOJTTVQQPSUFEGPSUSJBOHMFENFTIFT RVBENF
HFPNFUSJFT BOETVCEJWJTJPO HFPNFUSJFT "QBSUGSPNJOUFSQPMBUJOH U
USJCVUFJUTFMG JUJTBMTP QPTTJCMF UP HFU UIF GJSTU BOE TFDPOE PSEF
uilBUWBMVF 51JTJOUFSQPMBUJPO JHOPSFTEJTQMBDFNFOUTPGTVCEJWJTJP
BMXBZT JOUFSQPMBUFTUIFVOEFSMZJOHCBTFTVSGBDF

S5INWF,QWHUSPBMMIHFUT QBTTFE B OVNCFS PG BSHVNFOUTJOTJEFB TUSVD
UVSFPGTUWZAWHUSRODWHSU PP HEWNY¥ HFPNRPURXYB SBN
FUFS UIJT GVODUJPO TNPPUIMZ JOUFSQPMBUFT UIF QFS WFSUFY EBUB TUPS
TQFDJGJFE HF PRI USZ BWESIFISUORBSBNFUFST UPUIFV W
MPDBKBPEQBSBNFUFST PG BUEPQ@BEBUNFWFS 51F OVN
CFSPGGMPBUJOHQPJOUWBMVFTUPJOUFSQPMBUFBOE TUPSFUPUIFEFTUJO
CFTOQFDIJGIFEDOXHARQABIWBNFUFS "TJOUFSQPMBUJPO CVGGFS POFDBO
TQFDJGZ WFS4rkR¥ sy 3esvS3I(B9(BOE WFSUFY BUUSJCVUF CVGGFST
57&B%8))(5B7<3(B9(57(;B$77BHXFMM

5/FUWF,QWHUS RP@BMM YDOPSHRRAYWCFS PG JOUFSQPMBUFE GMPBU
JOHQPJOUWBMVFTUPUIFNFNPS2D0OPDBOIBWRIEIJTOUPFEIORM CZ
UIFJOUFSQPMBUFBBWBMNF CZTFUUJOH

51F GJSTU PSEFS EFSJIWBUJWF PG UIF JOUFSQPMBUJPO CZV BOE WBSF TUP
G3GROE3IGMFNPSZ MPDBUJPOT OOFDBO BWPJE TUPSJOH GJSTU PSEFS EFSJWB
CZTFUUJ®IGROEIAGY P8//

5|F TFDPOE PSEFS EFSIWBWGCIOBOAGET@E:BIE T@WRHEFE BU UIF
GXGMNFNPSZ MPDBUJPOT OOFDBOBWPIJETUPSJOHTFDPOE PSEFSEFSIJWBUJWEF
UJOHUIFTF UISFBQPJOUFST UP

, 1## HSH#HL#-1# joj

5P VIWF,QWHUSKBFPBVMBIHFPNFUSZ BMM DIBOHFT UP UIBU HFPNFUSZ NVTU
CFQSPQFSMZ DPNWFKRAE W THRORHH W U\
"MMJOQVUCVGGFSTBOEPVUQVUBSSBZTNVTUCFQBEEFEUP CZUFT BT Ul
NFOUBUJPO VTFT CZUF 44& JOTUSVDUJPOTUP SFBEBOE XSJUFJOUPUIFTF C
4FFUVUOBFBN BMBBIPROYBNQMBRG, ¥WHO BIdMMIDNH
UuJprpo

'PS QFSGPSNBODF SFBTPOT UIJT GVODUJPO EPFT OPU EP BOZ FSSPS DIFDLT
OPUTFUBOZFSSPSGMBHT PO GBJMVSF

SUD*OUFSQPMBUF/

, 1## HSHLHA-1# jok

p;ri 13! -3#1/.+ 3#

UWF, QWHUSRODWH1 SHUIRUPV 1 LQWHUSRODWLRQV RI YHUWH[DWWULEXWH GDWD

LOFOXGHPEUHH UWFRUH K!

VWUXBW&, QWHUSRODWH1$UJXPHQWYV
N
57&*HRPHWU\ JHRPHWU\
FROQVYWRLGYDOLG
FROQVXQVLJQHGWSULP,'V
FRQ VM RD WK
FRQVM) RDW
XQVLJQHGW
HQXB7&%XIIHU7\SH EXIIHU7\SH
XQVLIQHGVWEXIIHUBORW
IORD W
IORDWG 3G X
IORDWG3GY
IORDWE G3GXGX
IORDWEG3GYGY
IORDWGG3GXGY
XQVLIJQHGWDOXH&RXQW

YRL&®WF, QWHUSRODWH1
FROQVWUXBW&, QWHUSRODWH1$UJXPHQWY DUJV

5FUWF,QWHUSRDD WHN JWWVBRS AMPHUSROBWH FSGEBONXTI O
UFSQPMBUJPOT BU PODF *UBEEJUJPOBMMZ HFUTBOBSSBZPGYVY WDPPSEJOB
NBTYDOLGBBSBNFUFS UIBUTQFDJGJFT XIJDIPGUIFTFDPPSEJOBUFTBSF WBMJE
WBMJE NBTLIPRIJIFHFBP BOE B WBMVF PG EFOPUFT WBMJE BOE JOWBMJE *(
UIFWBMJE QRIBDNUMEMFNFOUT BSFDPOTJEFSTWBMJE S5IFEFTUJOBUJPO BSSB:
BSFGIMMFEJO TUSVDUVSF PG BSNBZU £0F ENBJIFVOMEIEIVBMVF

5P VIWF,QWHUSRGPWBIHFPNFUSZ BMMDIBOHFTUPUIBUHFPNFUSZNVTU
CFQSPQFSMZ DPNWFKRFHE W THROAHH W U\

'PS QFSGPSNBODF SFBTPOT UIJT GVODUJPO EPFT OPU EPBOZ FSSPS DIFDLT
OPUTFUBOZFSSPSGMBHT PO GBJMVSF

SUD*OUFSQPMBUF

, 1## HSHLHA-1# jol

pirj13! #7 57#1

UWF1HZ%XIIHU FUHOWABDVDD EXIIHU

LOFOXGHPEUHH UWFRUH K!

57&%XIIHU UWF1HZ%XIIHU
57& HYLFH GHYLFH
VLIHBB\WHG6L]H

5IFUWFLHZ%XGMODUJPO DSFBUFT B OFX EBUB CVGGFS PCKFDU PG TQFDJGJFE TJ
CZUE\WWH6LBSHVNFOU UIBU JT CPVOE UBRHMEBSH\DJGJFE EFWJIDF
NFOU 5IFCVGGFSPCKFDUJT SFGFSFODF DPVOUFE XJUIBO JOJUJBM SFGFSF
5IF SFUVSOFE CVGGFS PCKFD WWB®HO R S\FHWHBIHIEE VTJOH UIF
DBMM 5IF TQFDJGJFE OVNCFSPG CZUFTBSFBMMPDBUFEBUCVGGFSDPOTUSYV
EFBMMPDBUFE XIFOUIF CVGGFSJTEFTUSPZFE
8IFO UIF CVGGFS XJMM CF VTBESBT B \\EBSURFICV GGFS
7(; BOE7&B%8))(5B7<3(B9(57(;B$775U%BNMBTU CVGGFS FMFNFOU NVTU
CFSFBEBCMFVTJOH CZUF 44& MPBE JOTUSVDUJPOT UIVT QBEEJOH UIF MBTL
SFRVJSFE GPS DFSUBJO MBEPWUAS &FY @BVIGUBRSEBBEPVU TIPVME
BEE TUPSBHF GPSBU MFBTUPOF NPSFGMPBUUP UIF FOEPG UIFCVGGFS

00 GBJIMN3IF SFUVSOFE BOE BO FSSPS DPEFJT TFU UIBU DBO CF RVFSJFE VTJO
UWF*HW'HYLFH(UURU

SUD3FUBIOMHYIFOHBTF#VGGFS

, 1## HSHLHA-1# jom

p;rk 13! #7 ' 1#" 5"#1

UWF1HZ6KDUHG% XIIHU FQUHHDY WBIWHE GDWD EXIIHU

LOFOXGHPEUHH UWFRUH K!

57&% XIITHU UWF1HZ6KDUHG% XIIHU
57&'HYLFH GHYLFH
YRLGSWU
VLIHBBWAWHG6L]H

5IFUWF1HZ6KDUHG@XIOHUWUJPO DSFBUFT B OFX TIBSFE EBUB CVGGFS PCKFDU
CPVOE UP UIF TQFDB#GUBS IE¥FWRHOB 5IF CVGGFS PCKFDU JT SFGFS
FODF DPVOUFE XJUI BO JOJUJBM SFGFSFODF DPVOU PG 5IF CVGGFS DBO CF
VTIJOHWFBHOHDVHGMODUJP O

"UDPOTUSVDUJPO UJNF UIF QPJOUFS UPWMBIS VTFS NBOBHFE CVGGFS EBUB
HVNFOU JODMVEJOHEBEWTF§LUFE HONFAUFTIT QSPWJEFE UP DSFBUF
UIFCVGGFS "UCVGGFSDPOTUSVDUJPO UJNFOPCVGGFSEBUBJTBMMPDBUFE
EBUB QSPWJEFECZ UIFBQQMJDBUJPO JTVTFE 5IFCVGGFS EBUBNVTU SFNBJ(
BT MPOHBTUIFCVGGFS NBZCFVTFE BOEUIFVTFSJT SFTQPOTJCMF UP GSFF
EBUB XIFO OP MPOHFS SFRVJSFE

8IFO UIF CVGGFS XJMM CF VTBESBT B \\EBSUREICV GGFS
7(; BOE7&B%8))(5B7<3(B9(57(;B$775U%BNMBTU CVGGFS FMFNFOU NVTU
CFSFBEBCMFVTJOH CZUF 44& MPBE JOTUSVDUJPOT UIVT QBEEJOH UIF MBTL
SFRVJSFE GPS DFSUBJO MBEPWUAS &FY @BVIGUBRSEBBEPVU TIPVME
BEE TUPSBHF GPSBU MFBTUPOF NPSFGMPBUUP UIF FOEPG UIF CVGGFS

51F EBUB Q®WOBHASNFOU NVTUCFBMJHOFE UP CZUFT PUIFSXJTF UIF
UWF1HZ6KDUHGGYOIMWJIPO XJMM GBJM

00 GBJIMNIF SFUVSOFE BOEBO FSSPS DPEFJT TFU UIBU DBO CF RVFSJFE VTJO
UWF*HW'HYLFH(UURU

SUD3FUBIOUMYIFOHBTF#VGGFS

, 1## HSHLHA-1# jon

p;rl 13! #3 (- 57#1

UWFS5HWDLQ% XIIHU LQFUHPHQWY WKH EXIIHU UHIHUHQFH FRXQW

LOFOXGHPEUHH UWFRUH K!

YRLWF5HWDLQ%XIIHU 57&% XIITHU EXIIHU

#VGGFS PCKFDUT BSF SFGRSFHO W LIMHPR&EBEOBE JBOFJODSF

NFOUT UIF SFGFSFODF DPVOU PGEXIREEBIVFECYW GEIRIF PCKFDU

GVODUJPO UPUWWRLIHGHRYHIBMNIBXT UP VTF UIF JOUFSOBM SFGFSFODF
DPVOUJOHJOBS$ XSBQQFSDMBTTUPIBOEMF UIFPXOFSTIJQPGUIFPCKFDU

00 GBIJIMVSFBO FSSPSDPEFJT TRUWEFBW'BBIOFERBRESIFE VTIJOH

SUD/FX#8GBBEBMFBTF#VGGFS

, 1## #E#LH#-1#

joo

p;rm13! #+# 2# 5"#1

UWF5HOHDVH%»XIIHU GHFUHPHQWY WKH EXIIHU UHIHUHQFH FRXQW

LOFOXGHPEUHH UWFRUH K!

YRLO@WF5HOHDVH®WXIIHU 57&% XIIHU EXIIHU

#VGGFS PCKFDUT BSF SFGWSFERODHDOD PG DB JBIFEFDSF
NFOUTUIF SFGFSFODF DPVOU PBXUIHBGBEVINAEOANV G FO PCKFDU
UIFSFGFSFODFDPVOUGBMMTUP UIFCVGGFSHFUTEFTUSPZFE

00 GBIJMVSFBOFSSPSDPEFJT TRWSIBW'BBIOFBFRBNESIFE VTIJOH

SUD/FX#8GBBEBUBJO#VGGFS

. 1## HOHLH-1# jop

p;rnl13! #3 5"#1 3

UWF*HW% XIITHU'DWD JHWV D SRLQWHU WR WKH EXIIHU GDWD

LOFOXGHPEUHH UWFRUH K!

YRLGUWF*HW% XIIHU'DWD 57&% XIIHU EXIIHU

S5TRUWF*HW% XITHGW@&@DUJPO SFUVSOTB QPJOUFSUPUIFCVGGFSEBUBPGUIFTQFI
JGJFE CVG G&KSHEIH\DNUF O U

00 GBIJMVSFBOFSSPSDPEFJT TRWSIBW'BBIO-FEBRUBRESIFE VTJOH

SUD/FX#VGGFS

. 1## HOHLH-1# joq

57&5D\ VLQJOH UD\ VWUXFWXUH

LOFOXGHPEUHH UWFRUHBUD\ K!

VWUXBW&BS$/,*1 57&5D\

N

IORDWRUJB] [FRRUGLQDWH RI UD\ RULJLQ
IORDWRUJB\ \ FRRUGLQDWH RI UD\ RULJLQ
IORDWRUJB]] FRRUGLQDWH RI UD\ RULJLQ
IORDWQHDU VWDUW RI UD\ VHIPHQW

IORDWLUB] [FRRUGLQDWH RI UD\ GLUHFWLRQ
IORDWLUB\ \ FRRUGLQDWH RI UD\ GLUHFWLRQ
IORDWLUB]] FRRUGLQDWH RI UD\ GLUHFWLRQ
IORDWLPH WLPH RI WKLV UD\ IRU PRWLRQ EOXU
IORDWIDU HQG RI UD\ VHIJPHQW VHW WR KLW GLVWDQFH
XQVLJQH@GWDVN UD\ PDVN

XQVLJQHGW G UD\ ,

XQVLJQH@WODJV UD\ [0ODJV

51F57&5DFTUSVDUVSF EFGJOFT UIF SBZ MBZPVU GPS B TJOHMF SBZ 5IF SBZDPOL
UIF PSRHIERUJIBRUJBNFNCFST EJSFDBUUBE WEBSDUP S
] NEFNCFST BOE SBUQABHNFOWFNCFST 5IF SBZ EJSFDUJPO
EPFT OPU IBWF UP CF OPSNBMJ[FE BOE POMZ UIF QBSBNFUFS SBOHF TQFDJGJ
WQHDWDUOUFSWBM JT DPOTJEFSFE WBMJE

5I1F SBZ TFHNFOU NVTU[CF]JO IWITF SBOMFT UIBU TUBSU CFIJOE
UIF SBZPSJHJOBSFOPUBMMPXFE CVU SBOHFTDBO SFBDIUP JOGJOJUZ

5IF SBZ GVSUIFS DPOUBJOT B NPUDPAPDWIMMENJINF JO UIF SBOHF
CFS B SB2DMNTANCFS B SBMPNCFS BOE SBZIGMBHT
NFNCFS G5IFSBZNBTLDBOCFVTFEUPNBTLPVUTPNFHFPNFUSJFTGPSTPNF S
TRFVF6HW*HRPHWARE®NRSF EFUBJMT 5IF SBZ*% DBO CFVTFE UP JEFOUJGZ
BSBZJOTJEFBDBMMCBDL GVODUJPO FWFOJG UIFPSEFSPG SBZTJOTJEF B SE
DIBOHFE

5IFHPEUHH UWFRUHBWBEKS BEEJUJPOBMMZ EFGJOFTUIF TBNF SBZ TUSVD
UVSFJO TUSVDUVSF PG BSSBZ 40" MBZPVU GPS "1* GVODUJPOT BDDFQUJOH S
PG TJ§F&5DWUZQF TBIRBDUZQF BOBTA§B\UZQF 5IF
IFBEFS BEEJUJP O BMHKIZ EFGINOFETUFOGPS SBZ QBDLFUTPGBOBSCJUSBSZ
DPNQJMF UJNF TJ[F

35%$)JU

, 1## HSHLHA-1# jor

p;rp (3
57&+LW VLQJOH KLW VWUXFWXUH

LOFOXGHPEUHH UWFRUH K!

VWUXBW&+LW

N

IORDWIB]| [FRRUGLQDWH RI JHRPHWU\ QRUPDO
IORDWIB\ \ FRRUGLQDWH RI JHRPHWU\ QRUPDO
IORDWJIB]] FRRUGLQDWH RI JHRPHWU\ QRUPDO
IORDW EDU\FHQWULF X FRRUGLQDWH RI KLW
IORDW EDU\FHQWULF Y FRRUGLQDWH RI KLW
XQVLIJQHQGWULP,' JHRPHWU\ '

XQVLIJQHGQGWHRP,' SULPLWLYH

XQVLIQHGWQVW,'>57&B0%;B,167$1&(B/(9(/B&28AT@DQFH '

5IK7&+LWZQF EFGJOFTUIFUZQF PGB SBZ QSIJINJUJWF JOUFSTFDUJPO SFTVMU
DPOUBJOTUIF VOOPSNBMJ[FE HFPNFUSJD OPSNBM JO PCKFDU TQBDF BU UIF I
1JB[1JB\1JBINFNCFST UIFCBSZDFOUSJDV Y BDEPSEJOBUFT PG UIF IJU
NFNCFST BT XFMM BT SUEPQNSENGBSWHFB NHARKS,Z * %
NFNCFS BOEJOTUB®D/WNPMNTBBDRG UIFIJU 5IFQBSBNFUSJD JO
UFSTFDUJPOEJTUBODFJTOPUTUPSFEWIONFNCFIF |IJU CVUTUPSFEJOTJEFUIF
PG UIFSBZ

SIFHPEUHH UWFRUHHBWBEKS BEEJUJPOBMMZ EFGJOFTUIFTBNFIJUTUSVD
UVSFJO TUSVDUVSF PG BSSBZ 40" MBZ®&PNMWGERE I1JU QBDLFUT PG TJ[F
TI[F57&+LWZQF BOEsST4FEWUZQF O5IFIFBEFSBEEJUJPOBMMZ EF
GJOFMBOWUWNQMBUF GPS IJU QBDLFUT PG BOBSCJUSBSZDPNQJMF UJNF TJ[F

35$3BZ.VMUJ -FWFM *OTUBODJOH>

. 1## HOHLH-1# jpi

p;rq 9 (3

57&5D\+LW FRPELQHG VLQJOH UD\ KLW VWUXFWXUH

LOFOXGHPEUHH UWFRUHBUD\ K!

VWUXBW&25(BS$/,*1 57&5D\+LW
N
VWUXBW&5D\ UD\
VWUXBWE&+LW KLW

51F57&5D\+TWSVDUVSFJT VTFEUBT JOWQVYUB@S GVODUJPOT
BOETUPSFTUIFSBZUPJOUFSTFDUBOE T TPNFIJUGJFMETUIBUIPMEUIFJOUFST
BGUFSXBSET

5IFHPEUHH UWFRUHIEFUDEKS BEEJUJPOBMMZ EFGJOFT UIF TBNF SBZ 1JU
TUSVDUVSFJOTUSVDUVSFPGBSSBZ 40" MBZPVUGPS"1*GVODUJPOTBDDFQU
FUT PG 53&4ED\+LWZQF TJIRBD\+LMZQF BOEST&FD\
+LW UZQF 5IFIFBEFS BEEJUSMRGBMMWIENGWGETF BI® HF O
FSBUF SBZ IJUQBDLFUTPGBOBSCJUSBSZDPNQJMF UJNF TJ[F

35$3B¥5%$)JU

, 1## #E#LH#-1#

jpj

57&5D\1 UD\ SDFNHW RI UXQWLPH VLI]H

LOFOXGHPEUHH UWFRUHBUD\ K!
VWUXBW&5D\1

IORDW 7&5D\1BRUJB[57&5D\1XQDLJIQHGW
IORDW 7&5D\1BRUJB\ 57&5D\1XQDLJIQHGW
IORDW 7&5D\1BRUJB] 57&5D\1 XQDLJIQHGW
IORDW 7&5D\1BWQHDU 57&5D\XQUDAQHGW

IORDW 7&5D\1BGLUB[57&5D\1XQ@WDLIQHGWM
IORDW7&5D\1BGLUB\ 57&5D\1XQ@WDANIQHGW
IORDW7&5D\1BGLUB] 57&5D\1XQ@WDLJIQHGWM

XQVLJIQHGW
XQVLJIQHGW
XQVLJIQHGW
XQVLJIQHGW

XQVLJIQHGW
XQVLJIQHGW
XQVLJIQHGW

IORDW 7&5D\1BWLPH 57&5D\IXQMLNIQHGW XQVLJIQHGW

IORDW 57&5D\1BWIDU 57&5D\IXQ@WDNIQHGW XQVLJQHGW
XQVLJQH@W57&5D\1BPDVN 57&5D\1IX@DNIQHGW XQVLJIQHGW
XQVLIJQHQ@W57&5D\1BLG 57&5D\1 XUDALIJQHGW XQVLJIQHGW
XQVLIJQH@W57&5D\1BIODJV 57&5D\1XQDAIQHCGW XQVLJIQHGW

8IFO UIF SBZ QBDLFU TJ[FJT OPULOPXO BUDPNQJMF UIJNF F H XIFO &NCSFF
UVSOT B SBZ QBD&)EOWROUYDEBBEMMCBDL GVODUJPO &NCSFF VTFT UIF
57&5DWUZQF GPS SBZQBDLFUT 5IFTFSBZQBDLFUTDBOPOMZIBWFTJ[FTPG

/P PUIFS QBDLFU TJ[F XJMM CF VTFE

:PVDBOFJUIFSINQMFNFOUEJGGFSFOUTQFDJBMDPEFQBUITGPS FBDIPG UI
CMFQBDLFUTJ[FTBOEDBTUUIFSBZUPUIFBQQSPQSIJBUFSBZQBDLFUUZQF P!
POFHFOFSBMDPEF QWS D\IBUNMNIRFEIGFVODUJPOT UP BDDFTT UIF
SBZQBDLFUDPNQPOFOUT

5IFTFIFMQFS GVODUJPOT HFU B QP BGUNSIHCWIRUSBZ QBDLFU
QBDLFUB3SHVNFOU BOESFUVSOTBSFGFSFODFUPBDPNQPOFOU F H Y DPNQF
PGPSJHJO PGUIFUIFJ UWIBSBZVNGOUF QBDLFU

35%$)JU/

, L## HSHLH-1# ipk

pijii (3
57&+LW1 KLW SDFNHW RI UXQWLPH VL]H

LOFOXGHPEUHH UWFRUH K!
VWUXRWW1

IORDW7&+LW1B1JB[57&+LWIXQMUWQHGW XQVLJQHGW
IORDW 7&+LW1B1JB\ 57&+LWIX QKUWQHGW XQVLJQHGW
IORDW7&+LW1B1JB] 57&+LWIX QKUWQHGW XQVLJQHGW

IORDWS7&+LW1BX 57&+LWIXEKLMW QHGW XQVLJIQHGW
IORDW7&+LW1BY 57&+LWIXEKLMI QHGW XQVLJIQHGW

XQVLIQHGF&+LW1IBSULP, 57&+LWXQKLWOHGW XQVLJQHGW
XQVLIQHF&+LWIBJHRP, 57&+LWXQKLWOHGW XQVLJQHGW
XQVLIQHG@&+LWIBLQVW,' 57&+LWXQ\KLM)HGW XQVLJIJQHGW XQVLJQHGWHYHO

BIFOUIFIJUQBDLFUTJ[FJTOPULOPXOBUDPNQJIJMFUJINF F H XIFO&NCSFF SFL
BIJUQBDLFRJOOWHU)R@MMCBDL GVODUJPEY&&WASFFVTFTUIF
UZQF GPS I1JU QBDLFUT 5IFTFIJU QBDLFUT DBO POMZ IBWF TJ[FT PG PS
PUIFS QBDLFU TJ[F XJMM CF VTFE
:PVDBOFJUIFSINQMFNFOUEJGGFSFOUTQFDJBMDPEFQBUITGPSFBDIPG UI
CMFQBDLFUTJ[FTBOEDBTUUIFIJUUPUIFBQQSPQSJBUFIJUQBDLFUUZQF PS
POFHFOFSBMDPEF QEUFUWBRBINNDFBIGVODUJPOT UPBDDFTT IJU
QBDLFUDPNQPOFOUT
SIFTFIFMQFS GVODUJPOT HFU B RIPBSHVFSRPW IRUIFU QBDLFU
QBDLFUBSHVNFOU BOE SFUVSOTB SFGFSFODFUPBDPNQPOFOU F H YDPNCQ
OFOUWPKBG UIF UIFJ Ul 1JU PBSH¥NMBDU FU

35%$3BZ/

. 1## HOHLH-1# jpl

Pl 9 (3

57&5D\+LW1 FRPELQHG UD\ KLW SDFNHW RI UXQWLPH VL]H

LOFOXGHPEUHH UWFRUHBUD\ K!
VWUXBW&5D\+LW1

VWUXBW&5D\1 57&5D\+LWI1IBWDWEWL&S5D\+LW1 UD\KQWLJIQHGW
VWUXBW&+LWI1 57&5D\+LWYBHLXWEWE&S5D\+LW1 UD\KQWLIQHGW

8IFOUIFQBDLFUTJ[FPGBSBZ IJUTUSVDUVSFJTOPULOPXOBUDPNQJMFUJNF

&NCSFF SFUVSOT B SBA14 @B D\LHAW)O@BWMREBDL GVOD

UJPO &NCSFI7¥9RFLUMIFQF GPS SBZ QBDLFUT 5IFTF SBZ 1JU QBDLFUT

DBO POMZ IBWF TJ[FT PG PS /IPPUIFS QBDLFU TJ[F XJMM CF VTFE
:PVDBO FJUIFSINQMFNFOU EJGGFSFOUTQFDJBM DPEF QBUIT GPS FBDI PG U

TJCMF QBDLFU TJ[FT BOE DBTU UIF SBZ 1JU UP UIF BQQSPQSJBUF SBZ 1JU QBI

PS FYUSBDasD\BROE7&+LWIPNQPOFOUT VMRB W 3BIEE

UWF*HWHHIFMWLQFS GV O D UJPs0 &5301B \BIOERIA W1BGY OD

UJPOTUPBDDFTTUIFSBZBOEIJUQBSUTPGUIFTUSVDUVSF

35%)JU/

, 1## #E#LH#-1#

jpm

p;jik # 351# + &2

57&)HDWXUH)ODJV

IRUUD\ TXHULHV

LOFOXGHMPEUHH UWFRUHBUD\ K!

HQXB7&)HDWXUH)ODJV

N

57&B)($785(B)/$*B121(
57&B)($785(B)/$*B027,21B%/85

57&B)($785(B)/$*B75,$1*/(
57&B)($785(B)/$*B48$"
57&B)($785(B)/$*B*5,"
57&B)($785(B)/$*B68%"',9,6,21
57&B)($785(B)/$*B32,17
57&B)($785(B)/$*B&859(6

57&B)($785(B)/$*B&21(B/,1($5B&859(
57&B)($785(B)/$*B5281'B/,1($5B&859(
57&B)($785(B)/$*B)/$7B/,1($5B&859(

57&B)($785(B)/$*B5281'B%(=,(5B&859(
57&B)($785(B)/$*B)/$7B%(=,(5B&859(
57&B)($785(B)/$*B1250%/B25,(17('B%(=,(5B&859(

57&B)($785(B)/$*B5281'B%63/,1(B&859(
57&B)($785(B)/$*B)/$7B%63/,1(B&859(
57&B)($785(B)/$*B1250$/B25,(17('B%63/,1(B&859(

57&B)($785(B)/$*B5281'B+(50,7(B&859(
57&B)($785(B)/$*B)/$7B+(50,7(B&859(
57&B)($785(B)/$*B1250$/B25,(17('B+(50,7(B&859(

57&B)($785(B)/$*B5281'B&$708//B520B&859(
57&B)($785(B)/$*B)/$7B&$708//B520B&859(
57&B)($785(B)/$*B1250%$/B25,(17('B&$708//B520B&859(

57&B)($785(B)/$*B63+(5(B32,17
57&B)($785(B)/$*B',6&B32,17
57&B)($785(B)/$*B25,(17('B',6&B32,17

57&B)($785(B)/$*B5281'B&859(6
57&B)($785(B)/$*B)/$7B&859(6
57&B)($785(B)/$*B1250$/B25,(17('B&859(6

57&B)($785(B)/$*B/,1($5B&859(6

57&B)($785(B)/$*B% (=,(5B&859(6
57&B)($785(B)/$*B%63/,1(B&859(6
57&B)($785(B)/$*B+(50,7(B&859(6

VSHFLILHV IHDWXUHV WR HQDEOH

. 1## HOHLH-1# jpn

57&B)($785(B)/$*B,167$1&(

57&B)($785(B)/$*B),/7(5B)81&7,21B,1B$5*80(176
57&B)($785(B)/$*B),/7(5B)81&7,21B,1B*(20(75<
57&B)($785(B)/$*B),/7(5B)81&7,21

57&B)($785(B)/$*B86(5B*(20(75<B&$//%$&.B,1B$5*80(176
57&B)($785(B)/$*B86(5B*(20(75<B&$//%$&.B,1B*(20(75<
57&B)($785(B)/$*B86(5B*(20(75<

57&B)($785(B)/$*B B%,7B5$<B0$6.

57&B)($785(B)/$*BS/ 11111111

51F57&)HDWXUH)®POYW TQFDJGZ B CJU NBTL UP FOBCMF TQFDJGJD SBZ USBDJOH
GFBUVSFT GPS SBZ RVFSZ PQFSBUJPOT SUWFKGGBUVSF GMBHT BSF QBTTFE UP
WHUVHFW BOBEWF2FFOXGHG GVODUJPOT UH'S@RQH| UIF
WHUVHFWS$UJBROBIWAFFOXGHGSUJKESYWWVSFT 0OMZB SBZUSBDJOH
GFBUVSF XIPTFCJUJTFOBCMFE JO UIF GFBUVSF NBTLDBO HFUVTFE *G B GFB
OPUTFU UIFCFIBWJPVSJTVOEFGJOFE UIVTUIF GFBUVSFNBZ XPSLPSOPU 5i
NVMUJQMF GFBUVSFTUIF SFTQFDUJWF GFBUV¥SFTIBWFUP HFUDPNCJOFE VTJO
PQFSBUJPO

5/F QUSQPTF PG GFBUVSF GMBHT JT UP SFEVDF DPEF TJ[FPO UIF (16 CZ FOB(
KVTU UIF GFBUVSFT SFRVJSFE UP SFOEFS UIF TDFOF 0O UIF $16 UIFSFJT OP C
VTF GFBUVSF GMBHT BOE UIF EFGRYR)($PG BWMWEBFBUVSFT FOBCMFE
$// DBO KVTUCFLFQU

5/F GPMMPXJOH GFBUVSFTDBO HFU FOBCMFE VTJOH GFBUVSF GMBHT

*e35$@'&"563&@'-"(@.05*0/@#-63 &OBCMFTNPUJPOCMVSGPSBMMHFPN
FUSZUZQFT

®e35$@'&"563&@'-"(@53*"/(-& &OBCMFTUSJBOHMFHFPNFUSJFT 35%3@(&0.&5:
*e355@'&"563&@'-"(@26"% &OBCMFTRVBEHFPNFUSJFT 353@(&0.&53:@5:1&¢
e35$@'&"563&@'-"(@(3% &OBCMFTHSJEHFPNFUSJFT 353@(&0.&53:@5:1&0

*e355@'&"563&@'-"(@46#%*7*4*0/ &OBCMFT TVCEJWJTJPO HFPNFUSJFT
353@(&0.&53:@5:1&@46#%*7*4*0/

®e35$@'&"563&@'-"(@10*/5 &OBCMFTBMMQPJOUHFPNFUSZUZQFT 35%$@(&0.
®e35$@'&"563&@'-"(@%$637&4 &OBCMFTBMMDVSWFHFPNFUSZUZQFT 35%$@(&
*e35$@'&"563&@'-"(@306/%@%$637&4 &OBCMFTBMMSPVOEDVSWFT 35%$@(&0.
*e35$@'&"563&@'-"(@'-"5@%$637&4 &OBCMFTBMMGMBUDVSWFT 353@ (&0.&5:°

e35$@'&"563&@'-"(@/03."-@03&/5&%@$637&4 &OBCMFT BMM OPS
NBMPSIJFOUFEDVSWFT 35$@(&0.&53:@5:1&@/03."-@03*&/5&8% @999@ $637¢

e35$@'&"563&@'-"(@-/&"3@%$637&4 &OBCMFTBMMMJIOFBSDVSWFT 353@ (&
e355@'&"563&@'-"(@#&;&3@$637&4 &OBCMFTBMM#O[JFSDVSWFT 35%3@ (&C

®e35$@'&"563&@'-"(@#41-*/&@%$637&4 &OBCMFT BMM # TQMJOF DVSWFT
353@(&0.&53:@5:1& @999 @#41-*/&@$637&

1## #SH#HL#-1# jpo

*353@'&"563&@'-"(@)&3.*5&@$637&4 &OBCMFT BMM)FSNJUF DVSWFT
35$@(&0.853:@5:1&@999@)&3.*5&@$637&

®&35$@'&"563&@'-"(@%$0/&8@-*/&"3@%$637& &OBCMFT DPOF HFPNFUSZ
UZQF 353@(&0.&53:@5:1&@%$0/&@-*/&"3@%637&

35%@'&"563&@'-"(@306/%@-/&"3@%$637& &OBCMFT SPVOE MJOFBS
DVSWFT 353@(&0.&53:@5:1&@306/%@-*/&"3@%637&

e35$@'&"563&@'-"(@'-"5@-/&"3@%$637& &OBCMFTGMBUMJOFBSDVSWFT
358@(&0.&53:@5:1&@'-"5@-*/&"3@%$637&

e35$@'&"563&@'-"(@306/%@#&;&3@$637& &OBCMFT SPVOE #©[JFS
DVSWFT 353@(&0.&53:@5:1&@306/%@#&,;*&3@%$637&

e35$@'&"563&@'-"(@'-"5@#&;&3@$637& &OBCMFTGMBU#O[JFSDVSWFT
358@(&0.&53:@5:1&@'-"5@#&;*&3@$637&

®e355@'&"563&@'-"(@/03."-@03*&/5&8% @#&;*&3@$637& &OBCMFT
OPSNBMPSJFOUFE #O[JFSDVSWFT 35%3@(&0.&53:@5:1&@/03."-@03*&/5&% C

®&35$@'&"563&@'-"(@306/%@#41-*/&@%$637& &OBCMFTSPVOE# TQMJOF
DVSWFT 353@(&0.&53:@5:1&@306/%@#41-*/&@%637&

e354@'&"563&@'-"(@'-"5@#41-/&@%$637& &OBCMFTGMBU# TQMJOFDVSWFT
355@(&0.&53:@5:1&@'-"5@#41-*/1&@%637&

®35$@'&"563&@'-"(@/03."-@03*&/5&% @#41-*/&@%$637& &OBCMFT
OPSNBMPSJFOUFE# TQMJOFDVSWFT 35$@(&0.&53:@5:1&@/03."-@03*&/5¢&

*e35$@'&"563&@'-"(@306/%@)&3.*5&8@%$637& &OBCMFT SPVOE)FS
NJUFDVSWFT 35$@(&0.&53:@5:1&@306/%@)&3.*5&8@%$637&

®35%3@'&"563&@"'-"(@'-"5@)&3.*5&@%$637& &OBCMFT GMBU)FSNJUF
DVSWFT 353@(&0.&53:@5:1&@'-"5@)&3.*5&8@%$637&

®e35$@'&"563&@'-"(@/03."-@03*&/5&8%@)&3.*5&8@$637& &OBCMFT
OPSNBMPSJFOUFE)FSNJUFDVSWFT 353@(&0.&53:@5:1&@/03."-@03*&/5&Y

®e35$@'&"563&@'-"(@306/%@%"5.6--@30.@$637& &OBCMFTSPVOE
$BUNVMM3PNDVSWFT 35$@(&0.&53:@5:1&@306/%@%"5.6--@30.@%$637&

*e354@'&"563&@'-"(@'-"5@%$"5.6--@30.@$637& &OBCMFTGMBU $BU
NVMM3PNDVSWFT 353@(&0.&53:@5:1&@"'-"5@%$"5.6--@30.@%$637&

e35$@'&"563&@"'-"(@/03."-@03&/5&8%@$"5.6--@30.@%$637&
&OBCMFTOPSNBMPSJFOUFE$BUNVMM3PNDVSWFT 35$@(&0.&53:@5:1&@ /1

35$@'&"563&@'-"(@41)&3&@10/5 &OBCMFT TQIFSF HFPNFUSZ UZQF
35$@(&0.8&53: @5:1&@41)&3&@10*/5

*e35$@'&"563&@'-"(@%*4$@10*/5 &OBCMFTEJTDHFPNFUSZUZQF 35%$@(&0.&

®35%3@'&"563&@"'-"(@03*&/5&8%@%*4$@10*/5 &OBCMFT PSJFOUFE EJTD
HFPNFUSZUZQFT 353@(&0.&53:@5:1&@03*&/5&% @%*4$@10*/5

®e35$@'&"563&@'-"(@*/45"/$& &OBCMFTJOTUBODFHFPNFUSJFT 35$@(&0.&5

®&35%$@'&"563&@"'-"(@'*-5&43@'6/$5*0/@*/@"3(6.&/54 &OBCMFT
GIJIMUFS GVODUJPOTQBTTFE UISPVHIJOUFSTFDUBSHVNFOUT

®&35$@'&"563&@'-"(@'*-5&3@'6/$5*0/@*/@(&0.&53: &OBCMF GJM
UFS GVODUJPOTQBTTFEUISPVHIHFPNFUSZ

, L## HSHLH- | # ipp

®e35$@'&"563&@'-"(@'*-5&3@'6/$5*0/ &OBCMFT GJMUFS GVODUJPOT BS
HVNFOUBOEHFPNFUSZWFSTJPO

®e35$@'&"563&@'-"(@64&3@(&0.&53:@%"--#"$,@*/@"3(6.&/54
&OBCMFT353@(&0.&53: @5:1&@64&3 XJUIGVODUJPOQPJOUFSQBTTFEUISP
JOUFSTFDUBSHVNFOUT

®&355@'&"563&@'-"(@64&3@(&0.&53:@%"--#"%3,@*/@(&0.&53:
&OBCMFT35%3@(&0.&53:@5:1&@64&3 XJUIGVODUJPOQPJOUFSQBTTFEUISP
HFPNFUSZ PCKFDU

*e355@'&"563&@'-"(@64&3@(&0.&53: &OBCMFT353@(&0.&53:@5:1&@64&3
HFPNFUSJFT CPUIBSHVNFOUBOEHFPNFUSZDBMMCBDL WFSTJPOT

®e35$@'&"563&@'-"(@ @#*5@3":@."4, &OBCMFTGVMM CJUSBZNBTLT
*GOPUVTFE POMZUIF MPXFS CJUTJOUIFSBZNBTLBSFIBOEMFEDPSSFD!

*e35$@'&"563&@'-"(@"-- &OBCMFTBMM GFBUVSFT EFGBVMU

SUD*OUBYDFDUFSTRDDODD MVYPPEDMVEFE

. 1## HOHLH-1# jpq

p;jil 13! -(3 -3#12#!3 1&5,#-32

UWF,QLW,QWHUVHFWS$UJXPHQWYV LQLWLDOL]HV WKH/\WQWHWVHFW DUJXPHQWYV

LOFOXGHPEUHH UWFRUH K!

HQXB7&5D\4XHU\)ODJV

N
57&B5$<B48(5<B)/$*B121(
57&B5$<B48(5<B)/$*B,1&2+(5(17
57&B5$<B48(5<B)/$*B&2+(5(17
57&B5$<B48(5<B)/$*B,192.(B$5*80(17B),/7(5

VWUXBW&, QWHUVHFWS$UJIJXPHQWYV

N

HQXB7&5D\4XHU\)ODJV 10DJV
HQXB7&)HDWXUH)ODJV IHDWXUHBPDVN
VWUXBW&5D\AXHU\&RQWH[W FRQWHI[W
57&)LOWHU)XQFWLRQ1 ILOWHU

57& QWHUVHFW)XQFWLRQ1 LQWHUVHFW
LI 57&B0,1B:,'7+
IORDWLQ:LGWK'LVWDQFH)DFWRU

HQGLI

YRLGEWF, QLW, QWHUVHFW$UJIJXPHQWV
VWUXBW&, QWHUVHFWS$SUJIJXPHQWY DUJV

51FUWF,QLW,QWHUVHFW SN OPHHIWPO JOJUIBMI[FT UIF PQUJPOBM BSHVNFOU
TUSVDU UIBU DBO HBEWRQBWHFEHEW GIV¥ODUJPOT UP EFGBVMU
WBMVFT 5IFBSHVNFOUT TUSVDU OFFET UP HFU VTFE GPS NPSF BEWBODFE &N
UVSFTBTEFTDSJCFE IFSF

5/AODJNFNCFS DBOHFUVTFEUP FOBCMF TQFDJBM USBWFSTBM NPEF 6TJOH
578&B5$<B48(5<B)/$*B,1&2GMBH VTFT BO PQUJNJ[FE USBWFSTBM BMHPSJUIN
GPSJODPIFSFOU SB2T&E5GBY4kB)X$IBRRV TsRT7BO P Q
UJNJ[FEUSBWFSTBM BMHPSJUIN GPS DPIFSFOU SBZT FH QSJNBSZDBNFSB SE

5IAHDWXUHBNIWWCFS TIPVME HFUVTFE JO 4:$- UP KVTU FOBCMF SBZ USBD
JOHGFBUVSFTSFRVJSFEUP SFOEFS BHUWEOWDFOGBHIMFBTF TFFTFDUJPO
GPSBNPSFEFUBJMFEEFTDSJQUJPO

5lFFRQWHYWNCFS DBO HFU VTFE UP QBTT BO PQUJPOBM JOUFSTFDUJPO DPOU
*UJTHVBSBOUFFE UIBU UIF QPJOUFS UP UIF DPOUFYU QBTTFE UP B SBZ RVFSZ
QBTTFEUP BMM DBMMCBDL GVODUJPOT 51JT XBZJUJT QPTTJCMF UP BUUBDI E
UP UIF FOE PG UIF DPOUFYU TVDIBTB QFS SBZ QBZMPBE 1MFBTF OPUF UIBU
QPJOUFSJTOPUHVBSBOUFFEUPCFQBTTFEUPUIFDBMMCBDL GVODUJPOT UI
EJUJPOBMEBUB GSPNUIF SBZQPJOUFS QBTTFEUPDBMMCBDLTJTOPUQPTTJC
SUD*OJU3BZ2VEBI SIPGBEFWBIMT

5IAFLOWHNFNCFS TQFDJGJFTBGJMUFSGVODUJPOUPJOWPLFGPSFBDIFODPVC
I1JU 5IFTVQQPSUGPS UIFBSHVNFOU GJMUFS GVODUJPO NVTUCF FOBCMFE GP.

. 1## HOHLH-1# jpr

VTIJOHsW4B6&(1(B)/$*B),/7(5B)81&7,21B,1B$5BPQAF6GMBH *O
DBTFPGJOTUBODJOHUIJT GFBUVSFIBTUP HFUFOBCMFEBMTP GPSFBDIJOTUE
5/F BSHVNFOU GJMUFS GVODUJPO JT JOWPLFE GPS FBDI HFPNFUSZ GPS XI1JD
FYQMJDJUFMZ F QB/GMHFEYMREOMUL(EDEOH)LOWHU)XQFWLRQ)URPS$U
JXPHQ@®VODUJPO 5IF JOWPLBUJPO PG UIFBSHVNFOU GIJMUFS GVODUJPO DBO [
FOGPSFEGPS FBDI| HFPNELSS EASTI®H $HEF 192. (B$5+80(17B
),/7(5SBZRVFSZGMBH 5IJTBSHVNFOUGJMUFS GVODUJPOJTJOWPLFEBTBTFD
TUBHFBGUFSUIFQFS HFPNFUSZGJMUFS GVODUJPOJTJOWPLFE 0OOMZSBZTU
GJSTUGJMUFS TUBHFBSFWBMJEJO UIJTTFDPOE GJMUFS TUBHF)BWJOH TVDI
GJMUFS GVODUJPO DBO CF VTFGVM UP JNQMFNFOU NPEJGJDBUJPOT PG UIF CF
RVFSZ TVDIBTDPMMFDUJOHBMM IJUTPS BDDVNVMBUJOH USBOTQBSFODJFT
5IFLQWHUVNFWCFS TQFDJGJFTUIFVTFSHFPNFUSZDBMMCBDL UP HFU JOWPLF
GPS FBDI VTFS HFPNFUSZ FODPVOUFSFE EVSJOH USBWFSTBM 5IF VTFS HFPNI
CBDL TQFDJGJFE UIJT XBZ IBT QSFGFSFODF PWFS UIF POF TQFDJGJFE JOTJEF |
Uusz
5IFPLQ:LGWK'LVWDQFNYyBMWRFUDPOUSPMT UIF UBSHFU TJ[F PG UIF DVSWF
SBEJJ XIFO UIF NJO XJEUI GFBUVSF BUP@BUVPINFUMEBTF TFF UIF
BY3BEJVTADBMFIPO GPS NPSFEFUBJMT PO UIFNJO XJEUI GFBUVSF

/IPFSSPSDPEFJTTFUCZUIJTGVODUJPO

SUD*OUBYDEFDUFSBEBUWFBUVSEWMBIOTU3BZ2VFSM@PLOUEYR: @5:1&@64&3
SUD4FU(FPNFUSZ.BY3BEJVT4DBMF

. 1## HOHLH-1# jqi

p;jim13! -(3 !'"+5"#" 1&5,#-32

UWF,QLW2FFOXGHG$UJXPHQWYV LQLWLDOL]HVY WKH/WBROGWGHG DUJXPHQWYV

LOFOXGHPEUHH UWFRUH K!

HQXB7&5D\4XHU\)ODJV

N
57&B5$<B48(5<B)/$*B121(
57&B5$<B48(5<B)/$*B,1&2+(5(17
57&B5$<B48(5<B)/$*B&2+(5(17
57&B5$<B48(5<B)/$*B,192.(B$5*80(17B),/7(5

VWUXBW&2FFOXGHGSUIJXPHQWYV

N

HQXB7&5D\4XHU\)ODJV I0DJV
HQXB7&)HDWXUH)ODJV IHDWXUHBPDVN
VWUXBW&5D\AXHU\&RQWH[W FRQWH[W
57&)LOWHU)XQFWLRQ1 ILOWHU
57&2FFOXGHG)XQFWLRQ1 LQWHUVHEW
LI 57&B0,1B:,'7+
IORDWLQ:LGWK'LVWDQFH)DFWRU
HQGLI

YRLGEWF QLW2FFOXGHG$UIXPHQWV
VWUXBW&2FFOXGHGSUIJXPHQWY DUJV

51FUWF,QLW2FFOXGHGS$GBGMO®BYWRPO JOJUIJBMJI[FT UIF PQUJPOBM BSHVNFOU
TUSVDU UIBU DBO HMFQFFDKEE® PGMBPDUJPOT UP EFGBVMU WBM
VFT 5IFBSHVNFOUT TUSVDUOFFETUPHFUVTFEGPSNPSFBEWBODFE &NCSFF
BTEFTDSJCFE IFSF

5/AODJNFNCFS DBOHFUVTFEUP FOBCMF TQFDJBM USBWFSTBM NPEF 6TJOH
578&B5$<B48(5<B)/$*B,1&2GMBH VTFT BO PQUJNJ[FE USBWFSTBM BMHPSJUIN
GPSJODPIFSFOU SB2T&EFGBY4kB)X$IBRRV TsRT7BO P Q
UJNJ[FEUSBWFSTBM BMHPSJUIN GPS DPIFSFOU SBZT FH QSJNBSZDBNFSB SE

5IAHDWXUHBNIRWWCFS TIPVME HFUVTFE JO 4:$- UP KVTU FOBCMF SBZ USBD
JOHGFBUVSFTSFRVJSFEUP SFOEFS BHUWEOWDFOGBHIMFBTF TFETFDUJPO
GPSBNPSFEFUBJMFEEFTDSJQUJPO

5IFFRQWHYWNCFS DBO HFU VTFE UP QBTT BO PQUJPOBM JOUFSTFDUJPO DPOUI
*UJTHVBSBOUFFE UIBU UIF QPJOUFS UP UIF DPOUFYU QBTTFE UP B SBZ RVFSZ
QBTTFEUP BMM DBMMCBDL GVODUJPOT 51JT XBZJUJT QPTTJCMF UP BUUBDI E
UP UIF FOE PG UIF DPOUFYU TVDIBTB QFS SBZ QBZMPBE 1MFBTF OPUF UIBU
QPJOUFSJTOPUHVBSBOUFFEUPCFQBTTFEUPUIFDBMMCBDL GVODUJPOT UI
EJUJPOBMEBUB GSPNUIF SBZQPJOUFSQBTTFEUP DBMMCBDLTJTOPUQPTTJC
SUD*OJU3BZ2VEBI SIPGBEFWBIMT

5IFLOWHUFNCFS TQFDJGJFT B GJMUFS GVODUJPO UP JOWPLFE GPS FBDI FOD
UFSFE IJU 5IF TVQQPSU GPS UIF BSHVNFOU GJMUFS GVODUJPO NVTU CF FOB!
TDFOF CZ VFJ&B 4l lFB)/$*B),/7(5B)81&7,21B,1B$5BBQARG6

Embree API Reference

181

flag. In case of instancing this feature has to get enabled also for each instantiated
scene.

The argument filter function is invoked for each geometry for which it got
explicitely enabled usingthe rtcSetGeometryEnableFilterFunctionFromAr-
guments function. The invokation of the argument filter function can also get
enfored for each geometry usingthe RTC_RAY_QUERY_FLAG_INVOKE_ARGUMENT_
FILTER ray query flag. This argument filter function is invoked as a second filter
stage after the per-geometry filter function is invoked. Only rays that passed the
first filter stage are valid in this second filter stage. Having such a per ray-query
filter function can be useful to implement modifications of the behavior of the
query, such as collecting all hits or accumulating transparencies.

The intersect member specifies the user geometry callback to get invoked
for each user geometry encountered during traversal. The user geometry call-
back specified this way has preference over the one specified inside the geome-
try.

The minwidthDistanceFactor value controls the target size of the curve
radii when the min-width feature is enabled. Please see the rtcSetGeometry-
MaxRadiusScale function for more details on the min-width feature.

EXIT STATUS

No error code is set by this function.

SEE ALSO

rtcOccludedl, rtcOccluded4/8/16, RTCFeatureFlags, rtcinitRayQueryContext, RTC_GEOMETRY_TYPE_USER,

rtcSetGeometryMaxRadiusScale

Embree API Reference 182

7105 rtcInitRayQueryContext

NAME

rtcInitRayQueryContext - initializes the ray query context

SYNOPSIS

#include <embree4/rtcore.h>

struct RTCRayQueryContext
{
#if RTC_MAX_INSTANCE_LEVEL_COUNT > 1
unsigned int instStackSize;
#endif

unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT];
Y

void rtcInitRayQueryContext(
struct RTCRayQueryContext* context
)

DESCRIPTION

The rtcInitRayQueryContext function initializes the intersection context to
default values and should be called to initialize every ray query context.

It is guaranteed that the pointer to the ray query context (RTCRayQueryCon-
text type) is passed to the registered callback functions. This way it is possible
to attach arbitrary data to the end of the ray query context, such as a per-ray
payload.

Inside the user geometry callback the ray query context can get used to access
the instID stack to know which instance the user geometry object resides.

If not ray query context is specified when tracing a ray, a default context is
used.

EXIT STATUS

No error code is set by this function.

SEE ALSO
rtcintersectl, rtcintersect4/8/16, rtcOccludedl, rtcOccluded4/8/16

Embree API Reference 183

7106 rtcintersectl]

NAME

rtcIntersect! - finds the closest hit for a single ray

SYNOPSIS

#include <embree4/rtcore.h>

void rtcIntersecti(

RTCScene scene,

struct RTCRayHit* rayhit

struct RTCIntersectArguments* args = NULL
)

DESCRIPTION

The rtcIntersect1 function finds the closest hit of a single ray (rayhit argu-
ment) with the scene (scene argument). The provided ray/hit structure contains
the ray to intersect and some hit output fields that are filled when a hit is found.
The passed optional arguments struct (args argument) can get used for advanced
use cases, see section rtclnitintersectArguments for more details.

To trace a ray, the user has to initialize the ray origin (org ray member), ray
direction (dir ray member), ray segment (tnear, tfar ray members), ray mask
(mask ray member), and set the ray flags to 0 (flags ray member). The ray time
(time ray member) must be initialized to a value in the range $[0, 1]. The ray
segment has to be in the range [0, o], thus ranges that start behind the ray origin
are not valid, but ranges can reach to infinity. See Section RTCRay for the ray
layout description.

The geometry ID (geomID hit member) of the hit data must be initialized to
RTC_INVALID_GEOMETRY_ID (-1).

When no intersection is found, the ray/hit data is not updated. When an
intersection is found, the hit distance is written into the tfar member of the ray
and all hit data is set, such as unnormalized geometry normal in object space (Ng
hit member), local hit coordinates (u, v hit member), instance ID stack (instID
hit member), geometry ID (geomID hit member), and primitive ID (primID hit
member). See Section RTCHit for the hit layout description.

If the instance ID stack has a prefix of values not equal to RTC_INVALID_
GEOMETRY_ID, the instance ID on each level corresponds to the geometry ID of
the hit instance of the higher-level scene, the geometry ID corresponds to the hit
geometry inside the hit instanced scene, and the primitive ID corresponds to the
n-th primitive of that geometry.

If level 0 of the instance ID stack is equal to RTC_INVALID_GEOMETRY_ID, the
geometry ID corresponds to the hit geometry inside the top-level scene, and the
primitive ID corresponds to the n-th primitive of that geometry.

The implementation makes no guarantees that primitives whose hit distance
is exactly at (or very close to) tnear or tfar are hit or missed. If you want to
exclude intersections at tnear just pass a slightly enlarged tnear, and if you
want to include intersections at tfar pass a slightly enlarged tfar.

The ray pointer passed to callback functions is not guaranteed to be identi-
cal to the original ray provided. To extend the ray with additional data to be
accessed in callback functions, use the ray query context. See section rtclnitRay-
QueryContext for more details.

The ray/hit structure must be aligned to 16 bytes.

Embree API Reference 184

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO
rtcOccludedl, rtcintersect4/8/16, RTCRayHit, rtcinitintersectArguments

Embree API Reference 185

7107 rtcOccludedi

NAME

rtcOccluded! - finds any hit for a single ray

SYNOPSIS

#include <embree4/rtcore.h>

void rtcOccludedi(

RTCScene scene,

struct RTCRay* ray,

struct RTCOccludedArguments* args = NULL
);

DESCRIPTION

The rtcOccluded1 function checks for a single ray (ray argument) whether
there is any hit with the scene (scene argument). The passed optional argu-
ments struct (args argument) can get used for advanced use cases, see section
rtcInitOccludedArguments for more details.

To trace a ray, the user must initialize the ray origin (org ray member), ray
direction (dir ray member), ray segment (tnear, tfar ray members), ray mask
(mask ray member), and must set the ray flags to 0 (flags ray member). The ray
time (time ray member) must be initialized to a value in the range [0, 1]. The ray
segment must be in the range [0, o], thus ranges that start behind the ray origin
are not valid, but ranges can reach to infinity. See Section RTCRay for the ray
layout description.

When no intersection is found, the ray data is not updated. In case a hit was
found, the tfar component of the ray is set to -inf.

The implementation makes no guarantees that primitives whose hit distance
is exactly at (or very close to) tnear or tfar are hit or missed. If you want to
exclude intersections at tnear just pass a slightly enlarged tnear, and if you
want to include intersections at tfar pass a slightly enlarged tfar.

The ray pointer passed to callback functions is not guaranteed to be identi-
cal to the original ray provided. To extend the ray with additional data to be
accessed in callback functions, use the ray query context. See section rtclnitRay-
QueryContext for more details.

The ray must be aligned to 16 bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO
rtcintersectl, rtcOccluded4/8/16, RTCRay, rtcinitOccludedArguments

Embree API Reference 186

7108 rtcintersect4/8/16

NAME

rtcIntersect4/8/16 - finds the closest hits for a ray packet

SYNOPSIS

#include <embree4/rtcore.h>

void rtcIntersect4(

const int* valid,

RTCScene scene,

struct RTCRayHit4* rayhit,

struct RTCIntersectArguments* args = NULL
);

void rtcIntersect8(

const int* valid,

RTCScene scene,

struct RTCRayHit8* rayhit,

struct RTCIntersectArguments* args = NULL
):

void rtcIntersect16(

const int* valid,

RTCScene scene,

struct RTCRayHit16* rayhit,

struct RTCIntersectArguments* args
)

NULL

DESCRIPTION

The rtcIntersect4/8/16 functions finds the closest hits for a ray packet of
size 4, 8, or 16 (rayhit argument) with the scene (scene argument). The ray/hit
input contains a ray packet and hit packet. The passed optional arguments struct
(args argument) are used to pass additional arguments for advanced features.
See Section rtcIntersectl for more details and a description of how to set up and
trace rays.

A ray valid mask must be provided (valid argument) which stores one 32-bit
integer (-1 means valid and 0 invalid) per ray in the packet. Only active rays are
processed, and hit data of inactive rays is not changed.

The ray pointer passed to callback functions is not guaranteed to be identi-
cal to the original ray provided. To extend the ray with additional data to be
accessed in callback functions, use the ray query context. See section rtclnitRay-
QueryContext for more details.

For rtcIntersect4 the ray packet must be aligned to 16 bytes, for rtcIn-
tersect8 the alignment must be 32 bytes, and for rtcIntersect16 the align-
ment must be 64 bytes.

The rtcIntersect4, rtcIntersect8 and rtcIntersect16 functions may
change the ray packet size and ray order when calling back into filter func-
tions or user geometry callbacks. Under some conditions the application can
assume packets to stay intakt, which can determined by querying the RTC_DE-
VICE_PROPERTY_NATIVE_RAY4_SUPPORTED, RTC_DEVICE_PROPERTY_NATIVE_
RAY8_SUPPORTED, RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED proper-
ties through the rtcGetDeviceProperty function. See rtcGetDeviceProperty
for more information.

Embree API Reference 187

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEEALSO

rtcintersectl, rtcOccluded4/8/16, rtcinitintersectArguments

Embree API Reference 188

7109 rtcOccluded4/8/16

NAME

rtcOccluded4/8/16 - finds any hits for a ray packet

SYNOPSIS

#include <embree4/rtcore.h>

void rtcOccluded4(

const int* valid,

RTCScene scene,

struct RTCRay4* ray,

struct RTCOccludedArguments* args = NULL
);

void rtcOccluded8(

const int* valid,

RTCScene scene,

struct RTCRay8* ray,

struct RTCOccludedArguments* args = NULL
):

void rtcOccluded16(

const int* valid,

RTCScene scene,

struct RTCRay16* ray,

struct RTCOccludedArguments* args
)

NULL

DESCRIPTION

The rtcOccluded4/8/16 functions checks for each active ray of the ray packet
of size 4, 8, or 16 (ray argument) whether there is any hit with the scene (scene
argument). The passed optional arguments struct (args argument) can get used
for advanced use cases, see section rtcinitOccludedArguments for more details.
See Section rtcOccludedl for more details and a description of how to set up and
trace occlusion rays.

A ray valid mask must be provided (valid argument) which stores one 32-bit
integer (-1 means valid and 0 invalid) per ray in the packet. Only active rays are
processed, and hit data of inactive rays is not changed.

The ray pointer passed to callback functions is not guaranteed to be identi-
cal to the original ray provided. To extend the ray with additional data to be
accessed in callback functions, use the ray query context. See section rtclnitRay-
QueryContext for more details.

For rtcOccluded4 the ray packet must be aligned to 16 bytes, for rtcOc-
cludeds the alignment must be 32 bytes, and for rtcOccluded16 the alignment
must be 64 bytes.

The rtcOccluded4, rtcOccluded8 and rtcOccluded16 functions may change
the ray packet size and ray order when calling back into intersect filter func-
tions or user geometry callbacks. Under some conditions the application can
assume packets to stay intakt, which can determined by querying the RTC_DE-
VICE_PROPERTY_NATIVE_RAY4_SUPPORTED, RTC_DEVICE_PROPERTY_NATIVE_
RAY8_SUPPORTED, RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED proper-
ties through the rtcGetDeviceProperty function. See rtcGetDeviceProperty
for more information.

Embree API Reference 189

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO
rtcOccludedl, rtcintersect4/8/16, rtcinitOccludedArguments

Embree API Reference 190

7110 rtcForwardintersectl

NAME

rtcForwardIntersect1/Ex - forwards a single ray to new scene
from user geometry callback

SYNOPSIS

#include <embree4/rtcore.h>

void rtcForwardIntersect1(
const struct RTCIntersectFunctionNArguments* args,
RTCScene scene,
struct RTCRay* ray,
unsigned int instID

),

void rtcForwardIntersect1Ex(
const struct RTCIntersectFunctionNArguments* args,
RTCScene scene,
struct RTCRay* ray,
unsigned int instID,
unsigned int instPrimID,

),

DESCRIPTION

The rtcForwardIntersect1and rtcForwardIntersect1Ex functions forward
the traversal of a transformed ray (ray argument) into a scene (scene argument)
from a user geometry callback. The function can only get invoked from a user ge-
ometry callback for a ray traversal initiated with the rtcIntersect1 function.
The callback arguments structure of the callback invokation has to get passed
to the ray forwarding (args argument). The user geometry callback should in-
stantly terminate after invoking the rtcForwardIntersect1/Ex function.

Only the ray origin and ray direction members of the ray argument are used
for forwarding, all additional ray properties are inherited from the initial ray
traversal invokation of rtcIntersect1.

The implementation of the rtcForwardIntersect1 function recursively
continues the ray traversal into the specified scene and pushes the provided in-
stance ID (instIDargument) to the instance ID stack. Hit information is updated
into the ray hit structure passed to the original rtcIntersect1 invokation.

This function can get used to implement user defined instancing using user
geometries, e.g. by transforming the ray in a special way, and/or selecting be-
tween different scenes to instantiate.

For user defined instance arrays, the rtcForwardIntersect1Ex variant has
an additional instPrimID argument which is pushed to the instance primitive
ID stack. Instance primitive IDs identify which instance of an instance array was
hit.

When using Embree on the CPU it is possible to recursively invoke rtcIn-
tersect1 directly from a user geometry callback. However, when SYCL is used,
recursively tracing rays is not directly supported, and the rtcForwardInter-
sect1/Ex functions must be used.

The ray structure must be aligned to 16 bytes.

Embree API Reference 191

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO
rtcintersectl, RTCRay

Embree API Reference 192

711 rtcForwardOccludedi

NAME

rtcForwardOccluded1/Ex - forwards a single ray to new scene
from user geometry callback

SYNOPSIS

#include <embree4/rtcore.h>

void rtcForwardOccluded1(
const struct RTCOccludedFunctionNArguments* args,
RTCScene scene,
struct RTCRay* ray,
unsigned int instID

),

void rtcForwardOccluded1(
const struct RTCOccludedFunctionNArguments* args,
RTCScene scene,
struct RTCRay* ray,
unsigned int instID,
unsigned int instPrimID

),

DESCRIPTION

The rtcForwardOccluded1 and rtcForwardOccluded1Ex functions forward
the traversal of a transformed ray (ray argument) into a scene (scene argument)
from a user geometry callback. The function can only get invoked from a user
geometry callback for a ray traversal initiated with the rtcOccluded1 function.
The callback arguments structure of the callback invokation has to get passed
to the ray forwarding (args argument). The user geometry callback should in-
stantly terminate after invoking the rtcForwardOccluded1/Ex function.

Only the ray origin and ray direction members of the ray argument are used
for forwarding, all additional ray properties are inherited from the initial ray
traversal invokation of rtcOccluded1.

The implementation of the rtcForwardOccluded1 function recursively con-
tinues the ray traversal into the specified scene and pushes the provided instance
ID (instID argument) to the instance ID stack. Hit information is updated into
the ray structure passed to the original rtcOccluded1 invokation.

This function can get used to implement user defined instancing using user
geometries, e.g. by transforming the ray in a special way, and/or selecting be-
tween different scenes to instantiate.

For user defined instance arrays, the rtcForwardIntersect1Ex variant has
an additional instPrimID argument which is pushed to the instance primitive
ID stack. Instance primitive IDs identify which instance of an instance array was
hit.

When using Embree on the CPU it is possible to recursively invoke rt-
cOccluded1 directly from a user geometry callback. However, when SYCL is
used, recursively tracing rays is not directly supported, and the rtcForwardOc-
cluded1/Ex function must be used.

The ray structure must be aligned to 16 bytes.

Embree API Reference 193

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO
rtcOccludedl, RTCRay

Embree API Reference 194

7112 rtcForwardintersect4/8/16

NAME

rtcForwardIntersect4/8/16/Ex - forwards a ray packet to new scene
from user geometry callback

SYNOPSIS

#include <embree4/rtcore.h>

void rtcForwardIntersect4(
void int* valid,
const struct RTCIntersectFunctionNArguments* args,
RTCScene scene,
struct RTCRay4* ray,
unsigned int instID
)

void rtcForwardIntersect8(
void int* valid,
const struct RTCIntersectFunctionNArguments* args,
RTCScene scene,
struct RTCRay8* ray,
unsigned int instID
);

void rtcForwardIntersect16(
void int* valid,
const struct RTCIntersectFunctionNArguments* args,
RTCScene scene,
struct RTCRay16* ray,
unsigned int instID,
unsigned int instPrimID

),

void rtcForwardIntersect4Ex(
void int* valid,
const struct RTCIntersectFunctionNArguments* args,
RTCScene scene,
struct RTCRay4* ray,
unsigned int instID,
unsigned int instPrimID
)

void rtcForwardIntersect8Ex(
void int* valid,
const struct RTCIntersectFunctionNArguments* args,
RTCScene scene,
struct RTCRay8* ray,
unsigned int instID,
unsigned int instPrimID

).

void rtcForwardIntersect16Ex(
void int* valid,
const struct RTCIntersectFunctionNArguments* args,

Embree API Reference 195

RTCScene scene,

struct RTCRay16* ray,
unsigned int instID,
unsigned int instPrimID

DESCRIPTION

The rtcForwardIntersect4/8/16 and rtcForwardIntersect4/8/16Ex func-
tions forward the traversal of a transformed ray packet (ray argument) into a
scene (scene argument) from a user geometry callback. The function can only
get invoked from a user geometry callback for a ray traversal initiated with the
rtcIntersect4/8/16 function. The callback arguments structure of the call-
back invokation has to get passed to the ray forwarding (args argument). The
user geometry callback should instantly terminate after invoking the rtcFor-
wardIntersect4/8/16/Ex function.

Only the ray origin and ray direction members of the ray argument are used
for forwarding, all additional ray properties are inherited from the initial ray
traversal invokation of rtcIntersect4/8/16.

The implementation of the rtcForwardIntersect4/8/16 function recur-
sively continues the ray traversal into the specified scene and pushes the pro-
vided instance ID (instID argument) to the instance ID stack. Hit information is
updated into the ray hit structure passed to the original rtcIntersect4/8/16
invokation.

This function can get used to implement user defined instancing using user
geometries, e.g. by transforming the ray in a special way, and/or selecting be-
tween different scenes to instantiate.

For user defined instance arrays, the rtcForwardIntersect4/8/16Ex vari-
ant has an additional instPrimID argument which is pushed to the instance
primitive 1D stack. Instance primitive IDs identify which instance of an instance
array was hit.

When using Embree on the CPU it is possible to recursively invoke rtcIn-
tersect4/8/16 directly from a user geometry callback. However, when SYCL
is used, recursively tracing rays is not directly supported, and the rtcFor-
wardIntersect4/8/16 function must be used.

For rtcForwardIntersect4 the ray packet must be aligned to 16 bytes,
for rtcForwardIntersect8 the alignment must be 32 bytes, and for rtcFor-
wardIntersect16 the alignment must be 64 bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO

rtcintersect4/8/16

Embree API Reference 196

713 rtcForwardOccluded4/8/16

NAME

rtcForwardOccluded4/8/16/Ex - forwards a ray packet to new scene
from user geometry callback

SYNOPSIS

#include <embree4/rtcore.h>

void rtcForwardOccluded4(
void int* valid,
const struct RTCOccludedFunctionNArguments* args,
RTCScene scene,
struct RTCRay4* ray,
unsigned int instID
)

void rtcForwardOccluded8(
void int* valid,
const struct RTCOccludedFunctionNArguments* args,
RTCScene scene,
struct RTCRay8* ray,
unsigned int instID
);

void rtcForwardOccluded16(
void int* valid,
const struct RTCOccludedFunctionNArguments* args,
RTCScene scene,
struct RTCRay16* ray,
unsigned int instID
)

void rtcForwardOccluded4Ex(
void int* valid,
const struct RTCOccludedFunctionNArguments* args,
RTCScene scene,
struct RTCRay4* ray,
unsigned int instID,
unsigned int instPrimID

),

void rtcForwardOccluded8Ex(
void int* valid,
const struct RTCOccludedFunctionNArguments* args,
RTCScene scene,
struct RTCRay8* ray,
unsigned int instID,
unsigned int instPrimID

)

void rtcForwardOccluded16Ex(
void int* valid,
const struct RTCOccludedFunctionNArguments* args,
RTCScene scene,

Embree API Reference 197

struct RTCRay16* ray,
unsigned int instID,
unsigned int instPrimID

);

DESCRIPTION

The rtcForwardOccluded4/8/16 and rtcForwardOccluded4/8/16Ex func-
tions forward the traversal of a transformed ray packet (ray argument) into a
scene (scene argument) from a user geometry callback. The function can only
get invoked from a user geometry callback for a ray traversal initiated with the
rtcOccluded4/8/16 function. The callback arguments structure of the callback
invokation has to get passed to the ray forwarding (args argument). The user
geometry callback should instantly terminate after invoking the rtcForwardOc-
cluded4/8/16/Ex function.

Only the ray origin and ray direction members of the ray argument are used
for forwarding, all additional ray properties are inherited from the initial ray
traversal invokation of rtcOccluded4/8/16.

The implementation of the rtcForwardOccluded4/8/16 function recur-
sively continues the ray traversal into the specified scene and pushes the pro-
vided instance ID (instID argument) to the instance ID stack. Hit information
is updated into the ray structure passed to the original rtcOccluded4/8/16
invokation.

This function can get used to implement user defined instancing using user
geometries, e.g. by transforming the ray in a special way, and/or selecting be-
tween different scenes to instantiate.

For user defined instance arrays, the rtcForwardIntersect4/8/16Ex vari-
ant has an additional instPrimID argument which is pushed to the instance
primitive ID stack. Instance primitive IDs identify which instance of an instance
array was hit.

When using Embree on the CPU it is possible to recursively invoke rtcOc-
cluded4/8/16 directly from a user geometry callback. However, when SYCL is
used, recursively tracing rays is not directly supported, and the rtcForwardOc-
cluded4/8/16 function must be used.

For rtcForwardOccluded4 the ray packet must be aligned to 16 bytes, for
rtcForwardOccluded8 the alignment must be 32 bytes, and for rtcForwardOc-
cluded16 the alignment must be 64 bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO

rtcOccluded4/8/16

Embree API Reference 198

714 rtcInitPointQueryContext

NAME

rtcInitPointQueryContext - initializes the context information (e.g.
stack of (multilevel-)instance transformations) for point queries

SYNOPSIS

#include <embree4/rtcore.h>

struct RTC_ALIGN(16) RTCPointQueryContext

{
// accumulated 4x4 column major matrices from world to instance space.
float world2inst[RTC_MAX_INSTANCE_LEVEL_COUNT][16];

// accumulated 4x4 column major matrices from instance to world space.
float inst2world[RTC_MAX_INSTANCE_LEVEL_COUNT][16];

// instance ids.
unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT];

// number of instances currently on the stack.
unsigned int instStackSize;
b

void rtcInitPointQueryContext(
struct RTCPointQueryContext* context
)

DESCRIPTION

A stack (RTCPointQueryContext type) which stores the IDs and instance trans-
formations during a BVH traversal for a point query. The transformations are
assumed to be affine transformations (3x3 matrix plus translation) and therefore
the last column is ignored (see RTC_GEOMETRY_TYPE_INSTANCE for details).

The rtcInitPointContext function initializes the context to default values
and should be called for initialization.

The context will be passed as an argument to the point query callback func-
tion (see rtcSetGeometryPointQueryFunction) and should be used to pass in-
stance information down the instancing chain for user defined instancing (see
tutorial [ClosestPoint] for a reference implementation of point queries with user
defined instancing).

The context is an necessary argument to rtcPointQuery and Embree inter-
nally uses the topmost instance transformation of the stack to transform the
point query into instance space.

EXIT STATUS

No error code is set by this function.

SEEALSO

rtcPointQuery, rtcSetGeometryPointQueryFunction

Embree API Reference 199

7115 rtcPointQuery

NAME

rtcPointQuery - traverses the BVH with a point query object

SYNOPSIS

#include <embree4/rtcore.h>

struct RTC_ALIGN(16) RTCPointQuery
{

// location of the query

float x;

float y;

float z;

// radius and time of the query
float radius;
float time;

b

void rtcPointQuery(
RTCScene scene,
struct RTCPointQuery* query,
struct RTCPointQueryContext* context,
struct RTCPointQueryFunction* queryFunc,
void* userPtr

),

DESCRIPTION

The rtcPointQuery function traverses the BVH using a RTCPointQuery object
(query argument) and calls a user defined callback function (e.g queryFunc argu-
ment) for each primitive of the scene (scene argument) that intersects the query
domain.

The user has to initialize the query location (x, y and z member) and query
radius in the range [0, co]. If the scene contains motion blur geometries, also the
query time (time member) must be initialized to a value in the range [0, 1].

Further,a RTCPointQueryContext (context argument) must be created and
initialized. It contains ID and transformation information of the instancing hier-
archy if (multilevel-)instancing is used. See rtcInitPointQueryContext for further
information.

For every primitive that intersects the query domain, the callback function
(queryFunc argument) is called, in which distance computations to the primitive
can be implemented. The user will be provided with the primID and geomID
of the according primitive, however, the geometry information (e.g. triangle in-
dex and vertex data) has to be determined manually. The userPtr argument
can be used to input geometry data of the scene or output results of the point
query (e.g. closest point currently found on surface geometry (see tutorial [Clos-
estPoint])).

The parameter queryFunc is optional and can be NULL, in which case the
callback function is not invoked. However, a callback function can still get at-
tached to a specific RTCGeometry object using rtcSetGeometryPointQueryFunc-
tion. If a callback function is attached to a geometry and (a potentially different)
callback function is passed as an argument to rtcPointQuery, both functions
are called for the primitives of the according geometries.

Embree API Reference

200

The query radius can be decreased inside the callback function, which allows
to efficiently cull parts of the scene during BVH traversal. Increasing the query
radius and modifying time or location of the query will result in undefined be-
haviour.

The callback function will be called for all primitives in a leaf node of the
BVH even if the primitive is outside the query domain, since Embree does not
gather geometry information of primitives internally.

Point queries can be used with (multilevel)-instancing. However, care has
to be taken when the instance transformation contains anisotropic scaling or
sheering. In these cases distance computations have to be performed in world
space to ensure correctness and the ellipsoidal query domain (in instance space)
will be approximated with its axis aligned bounding box internally. Therefore,
the callback function might be invoked even for primitives in inner BVH nodes
that do not intersect the query domain. See rtcSetGeometryPointQueryFunction
for details.

The point query structure must be aligned to 16 bytes.

SUPPORTED PRIMITIVES
Currently, all primitive types are supported by the point query API except of

points (see RTC_GEOMETRY_TYPE_POINT), curves (see RTC_GEOMETRY_TYPE_CURVE)

and sudivision surfaces (see [RTC_GEOMETRY_SUBDIVISION]).

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO

rtcSetGeometryPointQueryFunction, rtcinitPointQueryContext

Embree API Reference 201

7116 rtcCollide

NAME

rtcCollide - intersects one BVH with another

SYNOPSIS

#include <embree4/rtcore.h>

struct RTCCollision {
unsigned int geomIDO, primIDO;
unsigned int geomID1, primID1;
b

typedef void (*RTCCollideFunc) (
void* userPtr,
RTCCollision* collisions,
size_t num_collisions);

void rtcCollide (
RTCScene hscene0,
RTCScene hscenet,
RTCCollideFunc callback,
void* userPtr

);

DESCRIPTION

The rtcCollide function intersects the BVH of hscene0 with the BVH of scene
hscene1 and calls a user defined callback function (e.g callback argument) for
each pair of intersecting primitives between the two scenes. A user defined data
pointer (userPtr argument) can also be passed in.

For every pair of primitives that may intersect each other, the callback func-
tion (callback argument) is called. The user will be provided with the primID’s
and geomID’s of multiple potentially intersecting primitive pairs. Currently,
only scene entirely composed of user geometries are supported, thus the user
is expected to implement a primitive/primitive intersection to filter out false pos-
itives in the callback function. The userPtr argument can be used to input ge-
ometry data of the scene or output results of the intersection query.

SUPPORTED PRIMITIVES
Currently, the only supported type is the user geometry type (see RTC_GEOMETRY_TYPE_USER).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

Embree API Reference

202

/17 rtcNewBVH

NAME

rtcNewBVH - creates a new BVH object

SYNOPSIS

#include <embree4/rtcore.h>

RTCBVH rtcNewBVH(RTCDevice device);

DESCRIPTION

This function creates a new BVH object and returns a handle to this BVH. The
BVH object is reference counted with an initial reference count of 1. The handle
can be released using the rtcReleaseBVH API call.

The BVH object can be used to build a BVH in a user-specified format over
user-specified primitives. See the documentation of the rtcBuildBVH call for
more details.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO
rtcRetainBVH, rtcReleaseBVH, rtcBuildBVH

Embree APl Reference 203

7118 rtcRetainBVH

NAME

rtcRetainBVH - increments the BVH reference count

SYNOPSIS

#include <embree4/rtcore.h>

void rtcRetainBVH(RTCBVH bvh);

DESCRIPTION

BVH objects are reference counted. The rtcRetainBVH function increments the
reference count of the passed BVH object (bvh argument). This function together
with rtcReleaseBVH allows to use the internal reference countingin a C++ wrap-
per class to handle the ownership of the object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO
rtcNewBVH, rtcReleaseBVH

Embree API Reference

204

7119 rtcReleaseBVH

NAME

rtcReleaseBVH - decrements the BVH reference count

SYNOPSIS

#include <embree4/rtcore.h>

void rtcReleaseBVH(RTCBVH bvh);

DESCRIPTION

BVH objects are reference counted. The rtcReleaseBVH function decrements
the reference count of the passed BVH object (bvh argument). When the refer-
ence count falls to 0, the BVH gets destroyed.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO
rtcNewBVH, rtcRetainBVH

Embree APl Reference 205

7120 rtcBuildBVH

NAME

rtcBuildBVH - builds a BVH

SYNOPSIS

#include <embree4/rtcore.h>

struct RTC_ALIGN(32) RTCBuildPrimitive
{
float lower_x, lower_y, lower_z;
unsigned int geomID;
float upper_x, upper_y, upper_z;
unsigned int primID;
h

typedef void* (*RTCCreateNodeFunction) (
RTCThreadLocalAllocator allocator,
unsigned int childCount,
void* userPtr

):

typedef void (*RTCSetNodeChildrenFunction) (
void* nodePtr,
void** children,
unsigned int childCount,
void* userPtr

);

typedef void (*RTCSetNodeBoundsFunction) (
void* nodePtr,
const struct RTCBounds** bounds,
unsigned int childCount,
void* userPtr

).

typedef void* (*RTCCreateLeafFunction) (
RTCThreadLocalAllocator allocator,
const struct RTCBuildPrimitive* primitives,
size_t primitiveCount,
void* userPtr

),

typedef void (*RTCSplitPrimitiveFunction) (
const struct RTCBuildPrimitive* primitive,
unsigned int dimension,
float position,
struct RTCBounds* leftBounds,
struct RTCBounds* rightBounds,
void* userPtr

).

typedef bool (*RTCProgressMonitorFunction)(
void* userPtr, double n

);

Embree API Reference

206

enum RTCBuildFlags

{

RTC_BUILD_FLAG_NONE,
RTC_BUILD_FLAG_DYNAMIC
Iy

struct RTCBuildArguments
{

size_t byteSize;

enum RTCBuildQuality buildQuality;
enum RTCBuildFlags buildFlags;
unsigned int maxBranchingFactor;
unsigned int maxDepth;

unsigned int sahBlockSize;
unsigned int minLeafSize;

unsigned int maxLeafSize;

float traversalCost;

float intersectionCost;

RTCBVH bvh;

struct RTCBuildPrimitive* primitives;
size_t primitiveCount;

size_t primitiveArrayCapacity;

RTCCreateNodeFunction createNode;
RTCSetNodeChildrenFunction setNodeChildren;
RTCSetNodeBoundsFunction setNodeBounds;
RTCCreateLeafFunction createleaf;
RTCSplitPrimitiveFunction splitPrimitive;
RTCProgressMonitorFunction buildProgress;
void* userPtr;

b
struct RTCBuildArguments rtcDefaultBuildArguments();

void* rtcBuildBVH(
const struct RTCBuildArguments* args

);

DESCRIPTION

The rtcBuildBVH function can be used to build a BVH in a user-defined format
over arbitrary primitives. All arguments to the function are provided through
the RTCBuildArguments structure. The first member of that structure must be
set to the size of the structure in bytes (bytesSize member) which allows future
extensions of the structure. It is recommended to initialize the build arguments
structure using the rtcDefaultBuildArguments function.

The rtcBuildBVH function gets passed the BVH to build (bvh member), the
array of primitives (primitives member), the capacity of that array (primi-
tiveArrayCapacity member), the number of primitives stored inside the ar-
ray (primitiveCount member), callback function pointers, and a user-defined
pointer (userPtr member) that is passed to all callback functions when invoked.
The primitives array can be freed by the application after the BVH is built. All
callback functions are typically called from multiple threads, thus their imple-

Embree API Reference

207

mentation must be thread-safe.

Four callback functions must be registered, which are invoked during build
to create BVH nodes (createNode member), to set the pointers to all children
(setNodeChildren member), to set the bounding boxes of all children (setN-
odeBounds member), and to create a leaf node (createLeaf member).

The function pointer to the primitive split function (splitPrimitive mem-
ber) may be NULL, however, then no spatial splitting in high quality mode is pos-
sible. The function pointer used to report the build progress (buildProgress
member) is optional and may also be NULL.

Further, some build settings are passed to configure the BVH build. Using the
build quality settings (buildQuality member), one can select between a faster,
low quality build which is good for dynamic scenes, and a standard quality build
for static scenes. One can also specify the desired maximum branching factor of
the BVH (maxBranchingFactor member), the maximum depth the BVH should
have (maxDepth member), the block size for the SAH heuristic (sahBlockSize
member), the minimum and maximum leaf size (mninLeafSize and maxLeafSize
member), and the estimated costs of one traversal step and one primitive inter-
section (traversalCost and intersectionCost members). When enabling the
RTC_BUILD_FLAG_DYNAMIC build flags (buildFlags member), re-build perfor-
mance for dynamic scenes is improved at the cost of higher memory require-
ments.

To spatially split primitives in high quality mode, the builder needs extra
space at the end of the build primitive array to store split primitives. The total
capacity of the build primitive array is passed using the primitiveArrayCapac-
ity member, and should be about twice the number of primitives when using
spatial splits.

The RTCCreateNodeFunc and RTCCreatelLeafFunc callbacks are passed a
thread local allocator object that should be used for fast allocation of nodes us-
ing the rtcThreadLocalAlloc function. We strongly recommend using this
allocation mechanism, as alternative approaches like standard malloc can be
over 10x slower. The allocator object passed to the create callbacks may be used
only inside the current thread. Memory allocated using rtcThreadLocalAl-
loc is automatically freed when the RTCBVH object is deleted. If you use your
own memory allocation scheme you have to free the memory yourself when the
RTCBVH object is no longer used.

The RTCCreateNodeFunc callback additionally gets the number of children
for this node in the range from 2 to maxBranchingFactor (childCount argu-
ment).

The RTCSetNodeChildFunc callback function gets a pointer to the node as
input (nodePtr argument), an array of pointers to the children (childPtrs ar-
gument), and the size of this array (childCount argument).

The RTCSetNodeBoundsFunc callback function gets a pointer to the node as
input (nodePtr argument), an array of pointers to the bounding boxes of the
children (bounds argument), and the size of this array (childCount argument).

The RTCCreateLeafFunc callback additionally gets an array of primitives
as input (primitives argument), and the size of this array (primitiveCount
argument). The callback should read the geomID and primID members from the
passed primitives to construct the leaf.

The RTCSplitPrimitiveFunc callback is invoked in high quality mode to
split a primitive (primitive argument) at the specified position (position argu-
ment) and dimension (dimension argument). The callback should return bounds
of the clipped left and right parts of the primitive (1LeftBounds and rightBounds
arguments).

The RTCProgressMonitorFunction callback function is called with the es-
timated completion rate n in the range [0, 1]. Returning true from the callback
lets the build continue; returning false cancels the build.

Embree APl Reference 208

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO
rtcNewBVH

Embree API Reference 209

7121 RTCQuaternionDecomposition

NAME

RTCQuaternionDecomposition - structure that represents a quaternion
decomposition of an affine transformation

SYNOPSIS

struct RTCQuaternionDecomposition
{
float scale_x, scale_y, scale_z;
float skew_xy, skew_xz, skew_yz;
float shift_x, shift_y, shift_z;
float quaternion_r, quaternion_i, quaternion_j, quaternion_k;
float translation_x, translation_y, translation_z;

Y

DESCRIPTION

The struct RTCQuaternionDecomposition represents an affine transformation
decomposed into three parts. An upper triangular scaling/skew/shift matrix

scale; skewg, skewg, shift,

g_ 0 scaley, skewy, shift,
0 0 scale, shift, |’
0 0 0 1
a translation matrix
1 0 0 ¢translation,
T_ 0 1 0 translation,

0 0 1 translation, ’
0 0 O 1

and a rotation matrix R, represented as a quaternion

quaternion, + quaternion; i+ quaternion; i + quaterniony k

where i, j k are the imaginary quaternion units. The passed quaternion will
be normalized internally.

The affine transformation matrix corresponding to a RTCQuaternionDecom-
positionis TRS and a point p = (p,, py, ps, 1)* will be transformed as

»=TRSp.

The functions rtcInitQuaternionDecomposition, rtcQuaternionDecom-
positionSetQuaternion, rtcQuaternionDecompositionSetScale, rtcQuater-
nionDecompositionSetSkew, rtcQuaternionDecompositionSetShift, and
rtcQuaternionDecompositionSetTranslation allow to set the fields of the
structure more conveniently.

EXIT STATUS

No error code is set by this function.

SEEALSO

rtcSetGeometryTransformQuaternion, rtcinitQuaternionDecomposition

Embree API Reference 210

7122 rtcInitQuaternionDecomposition

NAME

rtcInitQuaternionDecomposition - initializes quaternion decomposition

SYNOPSIS

void rtcInitQuaternionDecomposition(
struct RTCQuaternionDecomposition* qd

);

DESCRIPTION

The rtcInitQuaternionDecomposition functioninitializesaRTCQuaternion-
Decomposition structure to represent an identity transformation.

EXIT STATUS

No error code is set by this function.

SEE ALSO

rtcSetGeometryTransformQuaternion, RTCQuaternionDecomposition

21

Chapter 8

CPU Performance Recommen-
dations

8.1 MXCSR control and status register

It is strongly recommended to have the Flush to Zero and Denormals are
Zero mode of the MXCSR control and status register enabled for each thread
before calling the rtcIntersect-type and rtcOccluded-type functions. Other-
wise, under some circumstances special handling of denormalized floating point
numbers can significantly reduce application and Embree performance. When
using Embree together with the Intel® Threading Building Blocks, it is sufficient
to execute the following code at the beginning of the application main thread
(before the creation of the tbb: : task_scheduler_init object):

#include <xmmintrin.h>
#include <pmmintrin.h>

_MM_SET_FLUSH_ZERO_MODE (_MM_FLUSH_ZERO_ON) ;
_MM_SET_DENORMALS_ZERO_MODE (_MM_DENORMALS_ZERO_ON);

If using a different tasking system, make sure each rendering thread has the
proper mode set.

8.2 Thread Creation and Affinity Settings

Tasking systems like TBB create worker threads on demand, which will add a
runtime overhead for the very first rtcCommitScene call. In case you want
to benchmark the scene build time, you should start the threads at application
startup. You can let Embree start TBB threads by passing start_threads=1 to
the cfg parameter of rtcNewDevice.

On machines with a high thread count (e.g. dual-socket Xeon or Xeon Phi
machines), affinitizing TBB worker threads increases build and rendering per-
formance. You can let Embree affinitize TBB worker threads by passing set_
affinity=1 to the cfg parameter of rtcNewDevice. By default, threads are not
affinitized by Embree with the exception of Xeon Phi Processors where they are
affinitized by default.

All Embree tutorials automatically start and affinitize TBB worker threads by
passing start_threads=1,set_affinity=1to rtcNewDevice

CPU Performance Recommendations

212

8.3 Fast Coherent Rays

For getting the highest performance for highly coherent rays, e.g. primary or
hard shadow rays, it is recommended to use packets with setting the RTC_RAY_
QUERY_FLAG_COHERENT flag in the RTCIntersectArguments struct passed to
the rtcIntersect/rtcOccluded calls. The rays inside each packet should be
grouped as coherent as possible.

8.4 Huge Page Support

It is recommended to use huge pages under Linux to increase rendering perfor-
mance. Embree supports 2MB huge pages under Windows, Linux, and macOS.
Under Linux huge page support is enabled by default, and under Windows and
macOS disabled by default. Huge page support can be enabled in Embree by
passing hugepages=1 to rtcNewDevice or disabled by passing hugepages=0 to
rtcNewDevice

We recommend using 2MB huge pages with Embree under Linux as this im-
proves ray tracing performance by about 5-10%. Under Windows using huge
pages requires the application to run in elevated mode which is a security issue,
thus likely not an option for most use cases. Under macOS huge pages are rarely
available as memory tends to get quickly fragmented, thus we do not recommend
using huge pages on macOS.

8.4.1 Huge Pages under Linux

Linux supports transparent huge pages and explicit huge pages. To enable trans-
parent huge page support under Linux, execute the following as root:

echo always > /sys/kernel/mm/transparent_hugepage/enabled

When transparent huge pages are enabled, the kernel tries to merge 4KB
pages to 2MB pages when possible as a background job. Many Linux distribu-
tions have transparent huge pages enabled by default. See the following webpage
for more information on transparent huge pages under Linux. In this mode each
application, including your rendering application based on Embree, will automat-
ically tend to use huge pages.

Using transparent huge pages, the transitioning from 4KB to 2MB pages
might take some time. For that reason Embree also supports allocating 2MB
pages directly when a huge page pool is configured. Such a pool can be config-
ured by writing some number of huge pages to allocate to /proc/sys/vm/nr_
overcommit_hugepages as root user. E.g. to configure 2GB of address space for
huge page allocation, execute the following as root:

echo 1000 > /proc/sys/vm/nr_overcommit_hugepages

See the following webpage for more information on huge pages under Linux.

8.4.2 Huge Pagesunder Windows

To use huge pages under Windows, the current user must have the “Lock pages
in memory” (SeLockMemoryPrivilege) assigned. This can be configured through
the “Local Security Policy” application, by adding a user to “Local Policies” ->
“User Rights Assignment” -> “Lock pages in memory”. You have to log out and
in again for this change to take effect.

Further, your application must be executed as an elevated process (“Run as
administrator”) and the “SeLockMemoryPrivilege” must be explicitly enabled by

https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

CPU Performance Recommendations

213

your application. Example code on how to enable this privilege can be found
in the “common/sys/alloc.cpp” file of Embree. Alternatively, Embree will try
to enable this privilege when passing enable_selockmemoryprivilege=1 to
rtcNewDevice. Further, huge pages should be enabled in Embree by passing
hugepages=1 to rtcNewDevice.

When the system has been running for a while, physical memory gets frag-
mented, which can slow down the allocation of huge pages significantly under
Windows.

8.4.3 Huge Pages under macOS

To use huge pages under macOS you have to pass hugepages=1 to rtcNewDe-
vice to enable that feature in Embree.

When the system has been running for a while, physical memory gets quickly
fragmented, and causes huge page allocations to fail. For this reason, huge pages
are not very useful under macOS in practice.

8.5 Avoid store-to-load forwarding issues with sin-
glerays

We recommend to use a single SSE store to set up the org and tnear components,
and a single SSE store to set up the dir and time components of a single ray
(RTCRay type). Storing these values using scalar stores causes a store-to-load
forwarding penalty because Embree is reading these components using SSE loads
later on.

214

Chapter 9

GPU Performance Recommen-
dations

9.1 Low Code Complexity

As a general rule try to keep code complexity low, to avoid spill code generation.
To achieve this we recommend splitting your renderer into separate kernels in-
stead of using a single Uber kernel invokation.

Code can further get reduced by using SYCL specialization constants to just
enable rendering features required to render a given scene.

9.2 FeatureFlags

Use SYCL specialization constants and the feature flags (see section RTCFeature-
Flags) of the rtcIntersect1 and rtcOccluded1 calls to JIT compile minimal
code. The passed feature flags should just contain features required to render
the current scene. If JIT compile times are an issue, reduce the number of feature
masks used and use JIT caching (see section SYCL JIT caching).

9.3 Inline Indirect Calls

Attaching user geometry and intersection filter callbacks to the geometries of
the scene is not supported in SYCL for performance reasons.

Instead directly pass the user geometry and intersection filter callback func-
tions through the RTCIntersectArguments (and RTCOccludedArguments) struct
to rtcIntersect1 (and rtcOccluded1) API functions as in the following exam-

ple:

RTC_SYCL_INDIRECTLY_CALLABLE void intersectionFilter(
const RTCFilterFunctionNArguments* args

) { ...}

RTCIntersectArguments args;
rtcInitIntersectArguments(&args);
args.filter = intersectionFilter;

rtcIntersecti(scene,&ray,&args);

If the callback function is directly passed that way, the SYCL compiler can
inline the indirect call, which gives a huge performance benefit. Do not read a

GPU Performance Recommendations

215

function pointer form some memory location and pass it to rtcIntersect1 (and
rtcOccluded1) as this will also prevent inlining.

9.4 7Bit Ray Mask

Use just the lower 7 bits of the ray and geometry mask if possible, even though
Embree supports 32 bit ray masks for geometry masking. On the CPU using any
of the 32 bits yields the same performance, but the ray tracing hardware only
supports an 8 bit mask, thus Embree has to emulate 32 bit masking if used. For
that reason the lower 7 mask bits are hardware accelerated and fast, while the
mask bits 7-31 require some software intervention and using them reduces perfor-

mance. To turn on 32 bit ray masks use the RTC_FEATURE_FLAG 32 BIT_RAY_MASK

(see section RTCFeatureFlags).

9.5 Limit Motion Blur Motions

The motion blur implementation on SYCL has some limitations regarding sup-
ported motion. Primitive motion should be maximally as large as a small mul-
tiple of the primitive size, otherwise performance can degrade a lot. If detailed
geometry moves fast, best put the geometry into an instance, and apply motion
blur to the instance itself, which efficiently allows larger motions. As a fallback,
problematic scenes can always still get rendered robustly on the CPU.

9.6 Generic Pointers

Embree uses standard C++ pointers in its implementation. SYCL might not be
able to detect the memory space these pointers refer to and has to treat them
as generic pointers which are not performing optimal. The DPC++ compiler
has advanced optimizations to infer the proper address space to avoid usage of
generic pointers.

However, if you still encounter the following warning during ahead of time
compilation of SYCL kernels, then loads from generic pointer are present:

warning: Adding XX occurrences of additional control flow due to presence

of generic address space operations in function YYY.
To work around this issue we recommend:

« Do not use local memory inside kernels that trace rays. In this case the
DPC++ compiler knows that no local memory pointer can exist and will
optimize generic loads. As this is typically the case for renderers, generic
pointer will typically not cause issues.

« Indirectly callable functions may still cause problems, even if your kernel
does not use local memory. Thus best use SYCL pointers like sycl::global_ptr
and sycl:private_ptr in indirectly callable functions to avoid generic ad-
dress space usage.

* You can also enforce usage of global pointers using the following DPC++

compileflags: -cl-intel-force-global-mem-allocation -cl-intel-

no-local-to-generic.

216

Chapter 10

Embree Tutorials

Embree comes with a set of tutorials aimed at helping users understand how
Embree can be used and extended. There is a very basic minimal that can be
compiled as both C and C++, which should get new users started quickly. All
other tutorials exist in an Intel® ISPC and C++ version to demonstrate the two
versions of the API. Look for files named tutorialname_device.ispc for the
Intel® ISPC implementation of the tutorial, and files named tutorialname_de-
vice. cpp for the single ray C++ version of the tutorial. To start the C++ version
use the tutorialname executables, to start the Intel® ISPC version use the tu-
torialname_ispc executables. All tutorials can print available command line
options using the --help command line parameter.

For all tutorials except minimal, you can select an initial camera using the
--vp (camera position), --vi (camera look-at point), --vu (camera up vector),
and - -fov (vertical field of view) command line parameters:

./triangle_geometry --vp 10 10 10 --vi 0 0 O

You can select the initial window size using the --size command line pa-
rameter, or start the tutorials in full screen using the --fullscreen parameter:

./triangle_geometry --size 1024 1024
./triangle_geometry --fullscreen

The initialization string for the Embree device (rtcNewDevice call) can be
passed to the ray tracing core through the --rtcore command line parameter,

e.g.
./triangle_geometry --rtcore verbose=2,threads=1

The navigation in the interactive display mode follows the camera orbit
model, where the camera revolves around the current center of interest. With
the left mouse button you can rotate around the center of interest (the point
initially set with --vi). Holding Control pressed while clicking the left mouse
button rotates the camera around its location. You can also use the arrow keys
for navigation.

You can use the following keys:

F1 Default shading

F2 Gray EyeLight shading

F3 Traces occlusion rays only.

F4 UV Coordinate visualization

F5 Geometry normal visualization

F6 Geometry ID visualization

F7 Geometry ID and Primitive ID visualization

Embree Tutorials

217

F8 Simple shading with 16 rays per pixel for benchmarking.

F9 Switches to render cost visualization. Pressing again reduces brightness.
F10 Switches to render cost visualization. Pressing again increases brightness.
f Enters or leaves full screen mode.

¢ Prints camera parameters.

ESC Exits the tutorial.

q Exits the tutorial.

101 Minimal

This tutorial is designed to get new users started with Embree. It can be compiled
as both C and C++. It demonstrates how to initialize a device and scene, and how
to intersect rays with the scene. There is no image output to keep the tutorial as
simple as possible.

Source Code

10.2 Triangle Geometry

This tutorial demonstrates the creation of a static cube and ground plane
using triangle meshes. It also demonstrates the use of the rtcIntersect1 and
rtcOccluded1 functions to render primary visibility and hard shadows. The
cube sides are colored based on the ID of the hit primitive.

Source Code

https://github.com/embree/embree/blob/master/tutorials/minimal/minimal.cpp
https://github.com/embree/embree/blob/master/tutorials/triangle_geometry/triangle_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/triangle_geometry/triangle_geometry_device.cpp

Embree Tutorials

218

10.3 Dynamic Scene

This tutorial demonstrates the creation of a dynamic scene, consisting of sev-
eral deforming spheres. Half of the spheres use the RTC_BUILD_QUALITY_REFIT
geometry build quality, which allows Embree to use a refitting strategy for these
spheres, the other half uses the RTC_BUILD_QUALITY_LOW geometry build qual-
ity, causing a high performance rebuild of their spatial data structure each frame.
The spheres are colored based on the ID of the hit sphere geometry.

Source Code

https://github.com/embree/embree/blob/master/tutorials/dynamic_scene/dynamic_scene_device.cpp
https://github.com/embree/embree/blob/master/tutorials/dynamic_scene/dynamic_scene_device.cpp

Embree Tutorials

219

10.4 Multi Scene Geometry

This tutorial demonstrates the creation of multiple scenes sharing the same
geometry objects. Here, three scenes are built. One with all the dynamic spheres
of the Dynamic Scene test and two others each with half. The ground plane is
shared by all three scenes. The space bar is used to cycle the scene chosen for
rendering.

Source Code

https://github.com/embree/embree/blob/master/tutorials/multiscene_geometry/multiscene_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/multiscene_geometry/multiscene_geometry_device.cpp

Embree Tutorials

220

10.5 User Geometry

This tutorial shows the use of user-defined geometry, to re-implement in-
stancing, and to add analytic spheres. A two-level scene is created, with a trian-
gle mesh as ground plane, and several user geometries that instance other scenes
with a small number of spheres of different kinds. The spheres are colored using
the instance ID and geometry ID of the hit sphere, to demonstrate how the same
geometry instanced in different ways can be distinguished.

Source Code

https://github.com/embree/embree/blob/master/tutorials/user_geometry/user_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/user_geometry/user_geometry_device.cpp

Embree Tutorials

22]

10.6 Viewer

This tutorial demonstrates a simple OBJ viewer that traces primary visibility
rays only. A scene consisting of multiple meshes is created, each mesh sharing
the index and vertex buffer with the application. It also demonstrates how to
support additional per-vertex data, such as shading normals.

You need to specify an OBJ file at the command line for this tutorial to work:

./viewer -i model.obj

Source Code

https://github.com/embree/embree/blob/master/tutorials/viewer/viewer_device.cpp
https://github.com/embree/embree/blob/master/tutorials/viewer/viewer_device.cpp

Embree Tutorials

222

10.7 Intersection Filter

This tutorial demonstrates the use of filter callback functions to efficiently
implement transparent objects. The filter function used for primary rays lets the
ray pass through the geometry if it is entirely transparent. Otherwise, the shad-
ing loop handles the transparency properly, by potentially shooting secondary
rays. The filter function used for shadow rays accumulates the transparency of
all surfaces along the ray, and terminates traversal if an opaque occluder is hit.

Source Code

https://github.com/embree/embree/blob/master/tutorials/intersection_filter/intersection_filter_device.cpp
https://github.com/embree/embree/blob/master/tutorials/intersection_filter/intersection_filter_device.cpp

Embree Tutorials

223

10.8 Instanced Geometry

This tutorial demonstrates the in-build instancing feature of Embree, by in-
stancing a number of other scenes built from triangulated spheres. The spheres
are again colored using the instance ID and geometry ID of the hit sphere, to
demonstrate how the same geometry instanced in different ways can be distin-
guished.

Source Code

10.9 Instance Array Geometry

This tutorial demonstrates the usage of instance arrays in Embree. Instance

https://github.com/embree/embree/blob/master/tutorials/instanced_geometry/instanced_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/instanced_geometry/instanced_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/forest/forest_device.cpp

Embree Tutorials

224

arrays are large collections of similar objects. Examples are sand dunes that con-
sist of millions of instances of a few grain models or, like here, a forest consisting
of many instances of a few tree models.

In this application can switch between representing the scene with regular
instances or (one!) instance array. It also prints several stats, that demonstrate
the memory savings and faster BVH build times when using instance arrays for
such scenes. Instance arrays come with a small overhead on CPU and should
be preferred if memory consumption is more important than raytracing perfor-
mance.

Source Code

1010 Multi Level Instancing

This tutorial demonstrates multi-level instancing, i.e., nesting instances into
instances. To enable the tutorial, set the compile-time variable EMBREE_MAX_
INSTANCE_LEVEL_COUNT to a value other than the default 1. This variable is
available in the code as RTC_MAX_INSTANCE_LEVEL_COUNT.

The renderer uses a basic path tracing approach, and the image will progres-
sively refine over time. There are two levels of instances in this scene: mul-
tiple instances of the same tree nest instances of a twig. Intersections on up
to RTC_MAX_INSTANCE_LEVEL_COUNT nested levels of instances work out of the
box. Users may obtain the instance ID stack for a given hitpoint from the instID
member. During shading, the instance ID stack is used to accumulate normal
transformation matrices for each hit. The tutorial visualizes transformed nor-
mals as colors.

Source Code

https://github.com/embree/embree/blob/master/tutorials/forest/forest_device.cpp
https://github.com/embree/embree/blob/master/tutorials/multi_instanced_geometry/multi_instanced_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/multi_instanced_geometry/multi_instanced_geometry_device.cpp

Embree Tutorials

225

1011 Path Tracer

This tutorial is a simple path tracer, based on the viewer tutorial.
You need to specify an OBJ file and light source at the command line for this
tutorial to work:

./pathtracer -i model.obj --ambientlight 1 1 1

As example models we provide the “Austrian Imperial Crown” model by Mar-
tin Lubich and the “Asian Dragon” model from the Stanford 3D Scanning Repos-
itory.

crown.zip

asian_dragon.zip

To render these models execute the following:

./pathtracer -c crown/crown.ecs
./pathtracer -c asian_dragon/asian_dragon.ecs

Source Code

https://github.com/embree/embree/blob/master/tutorials/pathtracer/pathtracer_device.cpp
http://www.loramel.net
http://www.loramel.net
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://github.com/embree/models/releases/download/release/crown.zip
https://github.com/embree/models/releases/download/release/asian_dragon.zip
https://github.com/embree/embree/blob/master/tutorials/pathtracer/pathtracer_device.cpp

Embree Tutorials 226

1012 Hair

This tutorial demonstrates the use of the hair geometry to render a hairball.
Source Code

https://github.com/embree/embree/blob/master/tutorials/hair_geometry/hair_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/hair_geometry/hair_geometry_device.cpp

Embree Tutorials 227

1013 Curve Geometry

This tutorial demonstrates the use of the Linear Basis, B-Spline, and Catmull-
Rom curve geometries.
Source Code

https://github.com/embree/embree/blob/master/tutorials/curve_geometry/curve_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/curve_geometry/curve_geometry_device.cpp

Embree Tutorials 228

1014 Subdivision Geometry

This tutorial demonstrates the use of Catmull-Clark subdivision surfaces.
Source Code

https://github.com/embree/embree/blob/master/tutorials/subdivision_geometry/subdivision_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/subdivision_geometry/subdivision_geometry_device.cpp

Embree Tutorials 229

1015 Displacement Geometry

This tutorial demonstrates the use of Catmull-Clark subdivision surfaces with
procedural displacement mapping using a constant edge tessellation level.
Source Code

https://github.com/embree/embree/blob/master/tutorials/displacement_geometry/displacement_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/displacement_geometry/displacement_geometry_device.cpp

Embree Tutorials 230

1016 Grid Geometry

This tutorial demonstrates the use of the memory efficient grid primitive to
handle highly tessellated and displaced geometry.
Source Code

https://github.com/embree/embree/tree/master/tutorials/grid_geometry
https://github.com/embree/embree/tree/master/tutorials/grid_geometry

Embree Tutorials 231

10.17 Point Geometry

This tutorial demonstrates the use of the three representations of point ge-
ometry.
Source Code

https://github.com/embree/embree/blob/master/tutorials/point_geometry/point_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/point_geometry/point_geometry_device.cpp

Embree Tutorials

232

1018 Motion Blur Geometry

This tutorial demonstrates rendering of motion blur using the multi-segment
motion blur feature. Shown is motion blur of a triangle mesh, quad mesh, subdi-
vision surface, line segments, hair geometry, Bézier curves, instantiated triangle
mesh where the instance moves, instantiated quad mesh where the instance and
the quads move, and user geometry.

The number of time steps used can be configured using the --time-steps
<int>and --time-steps2 <int>command line parameters, and the geometry
can be rendered at a specific time using the the --time <float>command line
parameter.

Source Code

https://github.com/embree/embree/blob/master/tutorials/motion_blur_geometry/motion_blur_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/motion_blur_geometry/motion_blur_geometry_device.cpp

Embree Tutorials

233

10.19 Quaternion Motion Blur

This tutorial demonstrates rendering of motion blur using quaternion inter-
polation. Shown is motion blur using spherical linear interpolation of the rota-
tional component of the instance transformation on the left and simple linear
interpolation of the instance transformation on the right. The number of time
steps can be modified as well.

Source Code

https://github.com/embree/embree/blob/master/tutorials/quaternion_motion_blur/quaternion_motion_blur_device.cpp
https://github.com/embree/embree/blob/master/tutorials/quaternion_motion_blur/quaternion_motion_blur_device.cpp

Embree Tutorials 234

10.20 Interpolation

This tutorial demonstrates interpolation of user-defined per-vertex data.
Source Code

https://github.com/embree/embree/blob/master/tutorials/interpolation/interpolation_device.cpp
https://github.com/embree/embree/blob/master/tutorials/interpolation/interpolation_device.cpp

Embree Tutorials

235

10.21 Closest Point

This tutorial demonstrates a use-case of the point query API. The scene con-
sists of a simple collection of objects that are instanced and for several point in
the scene (red points) the closest point on the surfaces of the scene are computed
(white points). The closest point functionality is implemented for Embree inter-
nal and for user-defined instancing. The tutorial also illustrates how to handle
instance transformations that are not similarity transforms.

Source Code

https://github.com/embree/embree/blob/master/tutorials/closest_point/closest_point_device.cpp
https://github.com/embree/embree/blob/master/tutorials/closest_point/closest_point_device.cpp

Embree Tutorials 236

10.22 Voronoi

This tutorial demonstrates how to implement nearest neighbour lookups us-
ing the point query API. Several colored points are located on a plane and the
corresponding voroni regions are illustrated.

Source Code

https://github.com/embree/embree/blob/master/tutorials/voronoi/voronoi_device.cpp
https://github.com/embree/embree/blob/master/tutorials/voronoi/voronoi_device.cpp

Embree Tutorials

237

10.23 Collision Detection

collide

/

3
b
!

h 1]

(R,
\

This tutorial demonstrates how to implement collision detection using the
collide API. A simple cloth solver is setup to collide with a sphere.

The cloth can be reset with the space bar. The sim stepped once with n and
continuous simulation started and paused with p.

Source Code

10.24 BVH Builder

This tutorial demonstrates how to use the templated hierarchy builders of Em-
bree to build a bounding volume hierarchy with a user-defined memory layout
using a high-quality SAH builder using spatial splits, a standard SAH builder,
and a very fast Morton builder.

Source Code

10.25 BVH Access

This tutorial demonstrates how to access the internal triangle acceleration struc-
ture build by Embree. Please be aware that the internal Embree data structures
might change between Embree updates.

Source Code

https://github.com/embree/embree/blob/master/tutorials/collide/collide_device.cpp
https://github.com/embree/embree/blob/master/tutorials/collide/collide_device.cpp
https://github.com/embree/embree/blob/master/tutorials/bvh_builder/bvh_builder_device.cpp
https://github.com/embree/embree/blob/master/tutorials/bvh_access/bvh_access.cpp

Embree Tutorials 238

10.26 Find Embree

This tutorial demonstrates how to use the FIND_PACKAGE CMake feature to use
an installed Embree. Under Linux and macOS the tutorial finds the Embree
installation automatically, under Windows the embree_DIR CMake variable
must be set to the following folder of the Embree installation: C:\Program
Files\Intel\Embree3.

Source Code

10.27 Next Hit

This tutorial demonstrates how to robustly enumerate all hits along the ray using
multiple ray queries and an intersection filter function. To improve performance,
the tutorial also supports collecting the next N hits in a single ray query.

Source Code

https://github.com/embree/embree/blob/master/tutorials/find_embree/CMakeLists.txt
https://github.com/embree/embree/blob/master/tutorials/next_hit/next_hit_device.cpp

Embree Tutorials 239

© 2009-2020 Intel Corporation

Intel, the Intel logo, Xeon, Intel Xeon Phi, and Intel Core are trademarks of Intel Corporation in the U.S. and/or other countries.
“Other names and brands may be claimed as the property of others.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.

Intel optimizations, for Intel compilers or other products, may not optimize to the same degree for non-Intel products.

https://www.intel.com/PerformanceIndex

	Intel® Embree Overview
	Supported Platforms
	Embree Support and Contact
	Version History

	Installation of Embree
	Windows Installation
	Linux Installation
	macOS Installation
	Building Embree Applications
	Building Embree SYCL Applications
	Building Embree Tests

	Compiling Embree
	Linux and macOS
	Linux SYCL Compilation
	Windows
	Windows SYCL Compilation
	CMake Configuration

	Embree API
	Device Object
	Scene Object
	Geometry Object
	Ray Queries
	Point Queries
	Collision Detection
	Filter Functions
	BVH Build API

	Embree SYCL API
	SYCL JIT caching
	SYCL Memory Pooling
	Embree SYCL Limitations
	Embree SYCL Known Issues

	Upgrading from Embree 3 to Embree 4
	Embree API Reference
	rtcNewDevice
	rtcNewSYCLDevice
	rtcIsSYCLDeviceSupported
	rtcSYCLDeviceSelector
	rtcSetDeviceSYCLDevice
	rtcRetainDevice
	rtcReleaseDevice
	rtcGetDeviceProperty
	rtcGetDeviceError
	rtcSetDeviceErrorFunction
	rtcSetDeviceMemoryMonitorFunction
	rtcNewScene
	rtcGetSceneDevice
	rtcRetainScene
	rtcReleaseScene
	rtcAttachGeometry
	rtcAttachGeometryByID
	rtcDetachGeometry
	rtcGetGeometry
	rtcGetGeometryThreadSafe
	rtcCommitScene
	rtcJoinCommitScene
	rtcSetSceneProgressMonitorFunction
	rtcSetSceneBuildQuality
	rtcSetSceneFlags
	rtcGetSceneFlags
	rtcGetSceneBounds
	rtcGetSceneLinearBounds
	rtcNewGeometry
	RTC_GEOMETRY_TYPE_TRIANGLE
	RTC_GEOMETRY_TYPE_QUAD
	RTC_GEOMETRY_TYPE_GRID
	RTC_GEOMETRY_TYPE_SUBDIVISION
	RTC_GEOMETRY_TYPE_CURVE
	RTC_GEOMETRY_TYPE_POINT
	RTC_GEOMETRY_TYPE_USER
	RTC_GEOMETRY_TYPE_INSTANCE
	RTC_GEOMETRY_TYPE_INSTANCE_ARRAY
	RTCCurveFlags
	rtcRetainGeometry
	rtcReleaseGeometry
	rtcCommitGeometry
	rtcEnableGeometry
	rtcDisableGeometry
	rtcSetGeometryTimeStepCount
	rtcSetGeometryTimeRange
	rtcSetGeometryVertexAttributeCount
	rtcSetGeometryMask
	rtcSetGeometryBuildQuality
	rtcSetGeometryMaxRadiusScale
	rtcSetGeometryBuffer
	rtcSetSharedGeometryBuffer
	rtcSetNewGeometryBuffer
	RTCFormat
	RTCBufferType
	rtcGetGeometryBufferData
	rtcUpdateGeometryBuffer
	rtcSetGeometryIntersectFilterFunction
	rtcSetGeometryOccludedFilterFunction
	rtcSetGeometryEnableFilterFunctionFromArguments
	rtcInvokeIntersectFilterFromGeometry
	rtcInvokeOccludedFilterFromGeometry
	rtcSetGeometryUserData
	rtcGetGeometryUserData
	rtcGetGeometryUserDataFromScene
	rtcSetGeometryUserPrimitiveCount
	rtcSetGeometryBoundsFunction
	rtcSetGeometryIntersectFunction
	rtcSetGeometryOccludedFunction
	rtcSetGeometryPointQueryFunction
	rtcGetSYCLDeviceFunctionPointer
	rtcSetGeometryInstancedScene
	rtcSetGeometryInstancedScenes
	rtcSetGeometryTransform
	rtcSetGeometryTransformQuaternion
	rtcGetGeometryTransform
	rtcGetGeometryTransformEx
	rtcGetGeometryTransformFromScene
	rtcSetGeometryTessellationRate
	rtcSetGeometryTopologyCount
	rtcSetGeometrySubdivisionMode
	rtcSetGeometryVertexAttributeTopology
	rtcSetGeometryDisplacementFunction
	rtcGetGeometryFirstHalfEdge
	rtcGetGeometryFace
	rtcGetGeometryNextHalfEdge
	rtcGetGeometryPreviousHalfEdge
	rtcGetGeometryOppositeHalfEdge
	rtcInterpolate
	rtcInterpolateN
	rtcNewBuffer
	rtcNewSharedBuffer
	rtcRetainBuffer
	rtcReleaseBuffer
	rtcGetBufferData
	RTCRay
	RTCHit
	RTCRayHit
	RTCRayN
	RTCHitN
	RTCRayHitN
	RTCFeatureFlags
	rtcInitIntersectArguments
	rtcInitOccludedArguments
	rtcInitRayQueryContext
	rtcIntersect1
	rtcOccluded1
	rtcIntersect4/8/16
	rtcOccluded4/8/16
	rtcForwardIntersect1
	rtcForwardOccluded1
	rtcForwardIntersect4/8/16
	rtcForwardOccluded4/8/16
	rtcInitPointQueryContext
	rtcPointQuery
	rtcCollide
	rtcNewBVH
	rtcRetainBVH
	rtcReleaseBVH
	rtcBuildBVH
	RTCQuaternionDecomposition
	rtcInitQuaternionDecomposition

	CPU Performance Recommendations
	MXCSR control and status register
	Thread Creation and Affinity Settings
	Fast Coherent Rays
	Huge Page Support
	Avoid store-to-load forwarding issues with single rays

	GPU Performance Recommendations
	Low Code Complexity
	Feature Flags
	Inline Indirect Calls
	7 Bit Ray Mask
	Limit Motion Blur Motions
	Generic Pointers

	Embree Tutorials
	Minimal
	Triangle Geometry
	Dynamic Scene
	Multi Scene Geometry
	User Geometry
	Viewer
	Intersection Filter
	Instanced Geometry
	Instance Array Geometry
	Multi Level Instancing
	Path Tracer
	Hair
	Curve Geometry
	Subdivision Geometry
	Displacement Geometry
	Grid Geometry
	Point Geometry
	Motion Blur Geometry
	Quaternion Motion Blur
	Interpolation
	Closest Point
	Voronoi
	Collision Detection
	BVH Builder
	BVH Access
	Find Embree
	Next Hit

