Add MLT implementation without normalization.

This commit is contained in:
hal8174 2024-06-20 15:25:55 +02:00
parent 262c9f3635
commit d53b39f932
2 changed files with 230 additions and 78 deletions

View file

@ -1,108 +1,255 @@
#include "application_integrator.h"
#include "algorithms/parallel_for.h"
#include "imgui.h"
#include "math/vec2.h"
#include "math/vec3fa.h"
#include "random_sampler.hpp"
#include "random_sampler_wrapper.hpp"
#include "tasking/taskschedulerinternal.h"
#include <vector>
ApplicationIntegrator::ApplicationIntegrator(int argc, char** argv, const std::string& name):
Application(argc, argv, name)
{
resetRender();
ApplicationIntegrator::ApplicationIntegrator(int argc, char **argv,
const std::string &name)
: Application(argc, argv, name) {
resetRender();
}
void ApplicationIntegrator::drawGUI() {
bool bDirty = false;
bool bDirty = false;
if (ImGui::Checkbox("Metropolis", &bMetropolis)) {
resetRender();
}
if (ImGui::SliderInt("num chains", &num_chains, 1, 2000))
resetRender();
if (bDirty) {
resetRender();
}
if (ImGui::SliderInt("chain lengths", &chain_lengths, 1, 200000))
resetRender();
if (ImGui::SliderFloat("small step size", &small_step_size, 0.0, 0.1))
resetRender();
if (ImGui::SliderFloat("large step probability", &large_step_probability, 0.0,
1.0))
resetRender();
if (ImGui::Checkbox("Metropolis", &bMetropolis)) {
resetRender();
}
if (bDirty) {
resetRender();
}
}
inline float luminance(Vec3fa v) {
return 0.2126f * v.x + 0.7152f * v.y + 0.0722f * v.z;
return 0.2126f * v.x + 0.7152f * v.y + 0.0722f * v.z;
}
void ApplicationIntegrator::resetRender() {
Application::resetRender();
if (bMetropolis) {
data.film.count = false;
}
else {
data.film.count = true;
data.film.scalar = 1.0;
}
Application::resetRender();
if (bMetropolis) {
data.film.count = false;
} else {
data.film.count = true;
data.film.scalar = 1.0;
}
}
void ApplicationIntegrator::render(int* pixels, int width, int height, float time, const ISPCCamera& camera) {
deviceRender(camera);
void ApplicationIntegrator::render(int *pixels, int width, int height,
float time, const ISPCCamera &camera) {
deviceRender(camera);
if (!bMetropolis) {
mcRender(pixels, width, height, time, camera);
}
else {
mltRender(pixels, width, height, time, camera);
}
if (!bMetropolis) {
mcRender(pixels, width, height, time, camera);
} else {
mltRender(pixels, width, height, time, camera);
}
}
class MLTRandomSampler : public RandomSamplerWrapper {
private:
size_t index;
std::vector<float> data;
std::vector<float> new_data;
std::vector<size_t> last_changed;
size_t time;
size_t last_large_step;
float small_step_size;
float large_step_probability;
bool large_step;
void ApplicationIntegrator::mltRender(int* pixels, int width, int height, float time, const ISPCCamera& camera) {
float normalize(float x) {
if (x < 0.0) {
return x + 1.0;
} else if (x >= 1.0) {
return x - 1.0;
}
return x;
}
public:
MLTRandomSampler(float small_step_size, float large_step_probability)
: index(0), data({}), last_changed({}), time(0), last_large_step(0),
small_step_size(small_step_size),
large_step_probability(large_step_probability) {}
void init(int id) override { RandomSampler_init(sampler, id); }
void accept() {
time++;
for (size_t i = 0; i < new_data.size(); i++) {
if (i >= data.size()) {
data.push_back(new_data[i]);
last_changed.push_back(time);
} else {
data.at(i) = new_data.at(i);
last_changed.at(i) = time;
}
}
new_data.clear();
}
void new_ray(bool l) {
large_step = l;
}
bool is_large_step() { return large_step; }
float get1D() override {
if (is_large_step()) {
float r = RandomSampler_get1D(sampler);
new_data.push_back(r);
index++;
return r;
} else {
if (index >= data.size()) {
float r = RandomSampler_get1D(sampler);
data.push_back(r);
last_changed.push_back(time);
new_data.push_back(r);
index++;
return r;
} else if (last_changed.at(index) < last_large_step) {
float r = RandomSampler_get1D(sampler);
data.at(index) = r;
last_changed.at(index) = time;
new_data.push_back(r);
index++;
return r;
} else {
size_t steps = time - last_changed.at(index);
float d = data.at(index);
for (size_t i = 0; i < steps; i++) {
float r = RandomSampler_get1D(sampler);
float o = r * small_step_size - (small_step_size / 2.0);
d = normalize(d + o);
}
data.at(index) = d;
last_changed.at(index) = time;
float r = RandomSampler_get1D(sampler);
float o = r * small_step_size - (small_step_size / 2.0);
d = normalize(d + o);
new_data.push_back(d);
return d;
}
}
}
Vec2f get2D() override { return Vec2f(get1D(), get1D()); }
Vec3fa get3D() override { return Vec3fa(get1D(), get1D(), get1D()); }
};
void ApplicationIntegrator::mltRender(int *pixels, int width, int height,
float time, const ISPCCamera &camera) {
// data.film.scalar = ... use it for setting up the correct normalization
// coefficient
//
//
// you may want to use Distribution1D for the bootstrap
// d = Distribution1D(float* bis_values, num_bins)
// float integral = d.funcInt;
// int index_of_the_sampled_bin = d.SampleDiscrete(rng.get1D());
parallel_for(size_t(0), size_t(num_chains), [&](const range<size_t> &range) {
const int threadIndex = (int)TaskScheduler::threadIndex();
for (size_t i = range.begin(); i < range.end(); i++) {
MLTRandomSampler sampler(small_step_size, large_step_probability);
sampler.init(data.frame_count * num_chains + i);
float last_l = 0.0;
for (size_t j = 0; j < chain_lengths; j++) {
sampler.new_ray(RandomSampler_get1D(sampler.sampler) < large_step_probability);
float x = sampler.get1D() * width;
float y = sampler.get1D() * height;
int x_pixel = x;
int y_pixel = y;
Vec3f f = renderPixel(x, y, camera, g_stats[threadIndex], sampler);
float l = luminance(f);
if ((last_l == 0.0 && l > 0.0) || (last_l > 0.0 && RandomSampler_get1D(sampler.sampler) < l / last_l)) {
data.film.addSplat(x_pixel, y_pixel, f / l);
sampler.accept();
}
}
}
});
// data.film.scalar = ... use it for setting up the correct normalization coefficient
//
//
// you may want to use Distribution1D for the bootstrap
// d = Distribution1D(float* bis_values, num_bins)
// float integral = d.funcInt;
// int index_of_the_sampled_bin = d.SampleDiscrete(rng.get1D());
assert(0);
}
void ApplicationIntegrator::mcRender(int* pixels, int width, int height, float time, const ISPCCamera& camera) {
const int numTilesX = (width + TILE_SIZE_X - 1) / TILE_SIZE_X;
const int numTilesY = (height + TILE_SIZE_Y - 1) / TILE_SIZE_Y;
parallel_for(size_t(0), size_t(numTilesX * numTilesY), [&](const range<size_t>& range) {
const int threadIndex = (int)TaskScheduler::threadIndex();
for (size_t i = range.begin(); i < range.end(); i++)
renderTile((int)i, threadIndex, pixels, width, height, time, camera, numTilesX, numTilesY);
});
void ApplicationIntegrator::mcRender(int *pixels, int width, int height,
float time, const ISPCCamera &camera) {
const int numTilesX = (width + TILE_SIZE_X - 1) / TILE_SIZE_X;
const int numTilesY = (height + TILE_SIZE_Y - 1) / TILE_SIZE_Y;
parallel_for(size_t(0), size_t(numTilesX * numTilesY),
[&](const range<size_t> &range) {
const int threadIndex = (int)TaskScheduler::threadIndex();
for (size_t i = range.begin(); i < range.end(); i++)
renderTile((int)i, threadIndex, pixels, width, height, time,
camera, numTilesX, numTilesY);
});
}
/* renders a single screen tile */
void ApplicationIntegrator::mcRenderTile(int taskIndex, int threadIndex, int* pixels, const unsigned int width,
const unsigned int height, const float time, const ISPCCamera& camera, const int numTilesX,
const int numTilesY) {
const unsigned int tileY = taskIndex / numTilesX;
const unsigned int tileX = taskIndex - tileY * numTilesX;
const unsigned int x0 = tileX * TILE_SIZE_X;
const unsigned int x1 = min(x0 + TILE_SIZE_X, width);
const unsigned int y0 = tileY * TILE_SIZE_Y;
const unsigned int y1 = min(y0 + TILE_SIZE_Y, height);
void ApplicationIntegrator::mcRenderTile(int taskIndex, int threadIndex,
int *pixels, const unsigned int width,
const unsigned int height, const float time,
const ISPCCamera &camera,
const int numTilesX,
const int numTilesY) {
const unsigned int tileY = taskIndex / numTilesX;
const unsigned int tileX = taskIndex - tileY * numTilesX;
const unsigned int x0 = tileX * TILE_SIZE_X;
const unsigned int x1 = min(x0 + TILE_SIZE_X, width);
const unsigned int y0 = tileY * TILE_SIZE_Y;
const unsigned int y1 = min(y0 + TILE_SIZE_Y, height);
for (unsigned int y = y0; y < y1; y++)
for (unsigned int x = x0; x < x1; x++) {
RandomSamplerWrapper sampler;
Vec3fa L = Vec3fa(0.0f);
for (unsigned int y = y0; y < y1; y++)
for (unsigned int x = x0; x < x1; x++) {
RandomSamplerWrapper sampler;
Vec3fa L = Vec3fa(0.0f);
for (int i = 0; i < data.spp; i++)
{
sampler.init(x, y, (data.frame_count) * data.spp + i);
for (int i = 0; i < data.spp; i++) {
sampler.init(x, y, (data.frame_count) * data.spp + i);
/* calculate pixel color */
float fx = x + sampler.get1D();
float fy = y + sampler.get1D();
L = L + renderPixel(fx, fy, camera, g_stats[threadIndex], sampler);
}
L = L / (float)data.spp;
/* calculate pixel color */
float fx = x + sampler.get1D();
float fy = y + sampler.get1D();
L = L + renderPixel(fx, fy, camera, g_stats[threadIndex], sampler);
}
L = L / (float)data.spp;
/* write color to framebuffer */
data.film.addSplat(x, y, L);
}
}
/* write color to framebuffer */
data.film.addSplat(x, y, L);
}
}

View file

@ -28,4 +28,9 @@ protected:
void mcRenderTile(int taskIndex, int threadIndex, int* pixels, const unsigned int width,
const unsigned int height, const float time, const ISPCCamera& camera, const int numTilesX,
const int numTilesY);
int num_chains = 100;
int chain_lengths = 100000;
float small_step_size = 0.01;
float large_step_probability = 0.2;
};