Initial commit.
This commit is contained in:
		
						commit
						d3bb49b3f5
					
				
					 1073 changed files with 484757 additions and 0 deletions
				
			
		
							
								
								
									
										729
									
								
								Framework/external/embree/kernels/subdiv/bezier_curve.h
									
										
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										729
									
								
								Framework/external/embree/kernels/subdiv/bezier_curve.h
									
										
									
									
										vendored
									
									
										Normal file
									
								
							|  | @ -0,0 +1,729 @@ | |||
| // Copyright 2009-2021 Intel Corporation
 | ||||
| // SPDX-License-Identifier: Apache-2.0
 | ||||
| 
 | ||||
| #pragma once | ||||
| 
 | ||||
| #include "../common/default.h" | ||||
| //#include "../common/scene_curves.h"
 | ||||
| #include "../common/context.h" | ||||
| 
 | ||||
| namespace embree | ||||
| { | ||||
|   class BezierBasis | ||||
|   { | ||||
|   public: | ||||
| 
 | ||||
|     template<typename T> | ||||
|       static __forceinline Vec4<T> eval(const T& u)  | ||||
|     { | ||||
|       const T t1 = u; | ||||
|       const T t0 = 1.0f-t1; | ||||
|       const T B0 = t0 * t0 * t0; | ||||
|       const T B1 = 3.0f * t1 * (t0 * t0); | ||||
|       const T B2 = 3.0f * (t1 * t1) * t0; | ||||
|       const T B3 = t1 * t1 * t1; | ||||
|       return Vec4<T>(B0,B1,B2,B3); | ||||
|     } | ||||
|      | ||||
|     template<typename T> | ||||
|       static __forceinline Vec4<T>  derivative(const T& u) | ||||
|     { | ||||
|       const T t1 = u; | ||||
|       const T t0 = 1.0f-t1; | ||||
|       const T B0 = -(t0*t0); | ||||
|       const T B1 = madd(-2.0f,t0*t1,t0*t0); | ||||
|       const T B2 = msub(+2.0f,t0*t1,t1*t1); | ||||
|       const T B3 = +(t1*t1); | ||||
|       return T(3.0f)*Vec4<T>(B0,B1,B2,B3); | ||||
|     } | ||||
| 
 | ||||
|     template<typename T> | ||||
|       static __forceinline Vec4<T>  derivative2(const T& u) | ||||
|     { | ||||
|       const T t1 = u; | ||||
|       const T t0 = 1.0f-t1; | ||||
|       const T B0 = t0; | ||||
|       const T B1 = madd(-2.0f,t0,t1); | ||||
|       const T B2 = madd(-2.0f,t1,t0); | ||||
|       const T B3 = t1; | ||||
|       return T(6.0f)*Vec4<T>(B0,B1,B2,B3); | ||||
|     } | ||||
|   }; | ||||
|    | ||||
|   struct PrecomputedBezierBasis | ||||
|   { | ||||
|     enum { N = 16 }; | ||||
|   public: | ||||
|     PrecomputedBezierBasis() {} | ||||
|     PrecomputedBezierBasis(int shift); | ||||
| 
 | ||||
|     /* basis for bezier evaluation */ | ||||
|   public: | ||||
|     float c0[N+1][N+1]; | ||||
|     float c1[N+1][N+1]; | ||||
|     float c2[N+1][N+1]; | ||||
|     float c3[N+1][N+1]; | ||||
|      | ||||
|     /* basis for bezier derivative evaluation */ | ||||
|   public: | ||||
|     float d0[N+1][N+1]; | ||||
|     float d1[N+1][N+1]; | ||||
|     float d2[N+1][N+1]; | ||||
|     float d3[N+1][N+1]; | ||||
|   }; | ||||
|   extern PrecomputedBezierBasis bezier_basis0; | ||||
|   extern PrecomputedBezierBasis bezier_basis1; | ||||
| 
 | ||||
|    | ||||
|   template<typename V> | ||||
|     struct LinearBezierCurve | ||||
|     { | ||||
|       V v0,v1; | ||||
|        | ||||
|       __forceinline LinearBezierCurve () {} | ||||
|        | ||||
|       __forceinline LinearBezierCurve (const LinearBezierCurve& other) | ||||
|         : v0(other.v0), v1(other.v1) {} | ||||
|        | ||||
|       __forceinline LinearBezierCurve& operator= (const LinearBezierCurve& other) { | ||||
|         v0 = other.v0; v1 = other.v1; return *this; | ||||
|       } | ||||
|          | ||||
|         __forceinline LinearBezierCurve (const V& v0, const V& v1) | ||||
|           : v0(v0), v1(v1) {} | ||||
|        | ||||
|       __forceinline V begin() const { return v0; } | ||||
|       __forceinline V end  () const { return v1; } | ||||
|        | ||||
|       bool hasRoot() const; | ||||
|        | ||||
|       friend embree_ostream operator<<(embree_ostream cout, const LinearBezierCurve& a) { | ||||
|         return cout << "LinearBezierCurve (" << a.v0 << ", " << a.v1 << ")"; | ||||
|       } | ||||
|     }; | ||||
|    | ||||
|   template<> __forceinline bool LinearBezierCurve<Interval1f>::hasRoot() const { | ||||
|     return numRoots(v0,v1); | ||||
|   } | ||||
|    | ||||
|   template<typename V> | ||||
|     struct QuadraticBezierCurve | ||||
|     { | ||||
|       V v0,v1,v2; | ||||
|        | ||||
|       __forceinline QuadraticBezierCurve () {} | ||||
|        | ||||
|       __forceinline QuadraticBezierCurve (const QuadraticBezierCurve& other) | ||||
|         : v0(other.v0), v1(other.v1), v2(other.v2) {} | ||||
|        | ||||
|       __forceinline QuadraticBezierCurve& operator= (const QuadraticBezierCurve& other) { | ||||
|         v0 = other.v0; v1 = other.v1; v2 = other.v2; return *this; | ||||
|       } | ||||
|          | ||||
|         __forceinline QuadraticBezierCurve (const V& v0, const V& v1, const V& v2) | ||||
|           : v0(v0), v1(v1), v2(v2) {} | ||||
|        | ||||
|       __forceinline V begin() const { return v0; } | ||||
|       __forceinline V end  () const { return v2; } | ||||
|        | ||||
|       __forceinline V interval() const { | ||||
|         return merge(v0,v1,v2); | ||||
|       } | ||||
|        | ||||
|       __forceinline BBox<V> bounds() const { | ||||
|         return merge(BBox<V>(v0),BBox<V>(v1),BBox<V>(v2)); | ||||
|       } | ||||
|        | ||||
|       friend embree_ostream operator<<(embree_ostream cout, const QuadraticBezierCurve& a) { | ||||
|         return cout << "QuadraticBezierCurve ( (" << a.u.lower << ", " << a.u.upper << "), " << a.v0 << ", " << a.v1 << ", " << a.v2 << ")"; | ||||
|       } | ||||
|     }; | ||||
|    | ||||
|    | ||||
|   typedef QuadraticBezierCurve<float> QuadraticBezierCurve1f; | ||||
|   typedef QuadraticBezierCurve<Vec2fa> QuadraticBezierCurve2fa; | ||||
|   typedef QuadraticBezierCurve<Vec3fa> QuadraticBezierCurve3fa; | ||||
| 
 | ||||
|   template<typename Vertex> | ||||
|     struct CubicBezierCurve | ||||
|     { | ||||
|       Vertex v0,v1,v2,v3; | ||||
|        | ||||
|       __forceinline CubicBezierCurve() {} | ||||
| 
 | ||||
|       template<typename T1> | ||||
|       __forceinline CubicBezierCurve (const CubicBezierCurve<T1>& other) | ||||
|       : v0(other.v0), v1(other.v1), v2(other.v2), v3(other.v3) {} | ||||
|        | ||||
|       __forceinline CubicBezierCurve& operator= (const CubicBezierCurve& other) { | ||||
|         v0 = other.v0; v1 = other.v1; v2 = other.v2; v3 = other.v3; return *this; | ||||
|       } | ||||
|        | ||||
|       __forceinline CubicBezierCurve(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3) | ||||
|         : v0(v0), v1(v1), v2(v2), v3(v3) {} | ||||
| 
 | ||||
|       __forceinline Vertex begin() const { | ||||
|         return v0; | ||||
|       } | ||||
| 
 | ||||
|       __forceinline Vertex end() const { | ||||
|         return v3; | ||||
|       } | ||||
| 
 | ||||
|       __forceinline Vertex center() const { | ||||
|         return 0.25f*(v0+v1+v2+v3); | ||||
|       } | ||||
| 
 | ||||
|       __forceinline Vertex begin_direction() const { | ||||
|         return v1-v0; | ||||
|       } | ||||
| 
 | ||||
|       __forceinline Vertex end_direction() const { | ||||
|         return v3-v2; | ||||
|       } | ||||
| 
 | ||||
|       __forceinline CubicBezierCurve<float> xfm(const Vertex& dx) const { | ||||
|         return CubicBezierCurve<float>(dot(v0,dx),dot(v1,dx),dot(v2,dx),dot(v3,dx)); | ||||
|       } | ||||
| 
 | ||||
|       template<int W> | ||||
|       __forceinline CubicBezierCurve<vfloat<W>> vxfm(const Vertex& dx) const { | ||||
|         return CubicBezierCurve<vfloat<W>>(dot(v0,dx),dot(v1,dx),dot(v2,dx),dot(v3,dx)); | ||||
|       } | ||||
|        | ||||
|       __forceinline CubicBezierCurve<float> xfm(const Vertex& dx, const Vertex& p) const { | ||||
|         return CubicBezierCurve<float>(dot(v0-p,dx),dot(v1-p,dx),dot(v2-p,dx),dot(v3-p,dx)); | ||||
|       } | ||||
| 
 | ||||
|        __forceinline CubicBezierCurve<Vec3fa> xfm(const LinearSpace3fa& space) const | ||||
|       { | ||||
|         const Vec3fa q0 = xfmVector(space,v0); | ||||
|         const Vec3fa q1 = xfmVector(space,v1); | ||||
|         const Vec3fa q2 = xfmVector(space,v2); | ||||
|         const Vec3fa q3 = xfmVector(space,v3); | ||||
|         return CubicBezierCurve<Vec3fa>(q0,q1,q2,q3); | ||||
|       } | ||||
|        | ||||
|       __forceinline CubicBezierCurve<Vec3fa> xfm(const LinearSpace3fa& space, const Vec3fa& p) const | ||||
|       { | ||||
|         const Vec3fa q0 = xfmVector(space,v0-p); | ||||
|         const Vec3fa q1 = xfmVector(space,v1-p); | ||||
|         const Vec3fa q2 = xfmVector(space,v2-p); | ||||
|         const Vec3fa q3 = xfmVector(space,v3-p); | ||||
|         return CubicBezierCurve<Vec3fa>(q0,q1,q2,q3); | ||||
|       } | ||||
| 
 | ||||
|       __forceinline CubicBezierCurve<Vec3ff> xfm_pr(const LinearSpace3fa& space, const Vec3fa& p) const | ||||
|       { | ||||
|         const Vec3ff q0(xfmVector(space,(Vec3fa)v0-p), v0.w); | ||||
|         const Vec3ff q1(xfmVector(space,(Vec3fa)v1-p), v1.w); | ||||
|         const Vec3ff q2(xfmVector(space,(Vec3fa)v2-p), v2.w); | ||||
|         const Vec3ff q3(xfmVector(space,(Vec3fa)v3-p), v3.w); | ||||
|         return CubicBezierCurve<Vec3ff>(q0,q1,q2,q3); | ||||
|       } | ||||
| 
 | ||||
|       __forceinline CubicBezierCurve<Vec3fa> xfm(const LinearSpace3fa& space, const Vec3fa& p, const float s) const | ||||
|       { | ||||
|         const Vec3fa q0 = xfmVector(space,s*(v0-p)); | ||||
|         const Vec3fa q1 = xfmVector(space,s*(v1-p)); | ||||
|         const Vec3fa q2 = xfmVector(space,s*(v2-p)); | ||||
|         const Vec3fa q3 = xfmVector(space,s*(v3-p)); | ||||
|         return CubicBezierCurve<Vec3fa>(q0,q1,q2,q3); | ||||
|       } | ||||
|        | ||||
|       __forceinline int maxRoots() const; | ||||
|        | ||||
|       __forceinline BBox<Vertex> bounds() const { | ||||
|         return merge(BBox<Vertex>(v0),BBox<Vertex>(v1),BBox<Vertex>(v2),BBox<Vertex>(v3)); | ||||
|       } | ||||
|        | ||||
|       __forceinline friend CubicBezierCurve operator +( const CubicBezierCurve& a, const CubicBezierCurve& b ) { | ||||
|         return CubicBezierCurve(a.v0+b.v0,a.v1+b.v1,a.v2+b.v2,a.v3+b.v3); | ||||
|       } | ||||
|        | ||||
|       __forceinline friend CubicBezierCurve operator -( const CubicBezierCurve& a, const CubicBezierCurve& b ) { | ||||
|         return CubicBezierCurve(a.v0-b.v0,a.v1-b.v1,a.v2-b.v2,a.v3-b.v3); | ||||
|       } | ||||
|        | ||||
|       __forceinline friend CubicBezierCurve operator -( const CubicBezierCurve& a, const Vertex& b ) { | ||||
|         return CubicBezierCurve(a.v0-b,a.v1-b,a.v2-b,a.v3-b); | ||||
|       } | ||||
|        | ||||
|       __forceinline friend CubicBezierCurve operator *( const Vertex& a, const CubicBezierCurve& b ) { | ||||
|         return CubicBezierCurve(a*b.v0,a*b.v1,a*b.v2,a*b.v3); | ||||
|       } | ||||
| 
 | ||||
|       __forceinline friend CubicBezierCurve cmadd( const Vertex& a, const CubicBezierCurve& b,  const CubicBezierCurve& c) { | ||||
|         return CubicBezierCurve(madd(a,b.v0,c.v0),madd(a,b.v1,c.v1),madd(a,b.v2,c.v2),madd(a,b.v3,c.v3)); | ||||
|       } | ||||
|        | ||||
|       __forceinline friend CubicBezierCurve clerp ( const CubicBezierCurve& a, const CubicBezierCurve& b, const Vertex& t ) { | ||||
|         return cmadd((Vertex(1.0f)-t),a,t*b); | ||||
|       } | ||||
|        | ||||
|       __forceinline friend CubicBezierCurve merge ( const CubicBezierCurve& a, const CubicBezierCurve& b ) { | ||||
|         return CubicBezierCurve(merge(a.v0,b.v0),merge(a.v1,b.v1),merge(a.v2,b.v2),merge(a.v3,b.v3)); | ||||
|       } | ||||
|        | ||||
|       __forceinline void split(CubicBezierCurve& left, CubicBezierCurve& right, const float t = 0.5f) const | ||||
|       { | ||||
|         const Vertex p00 = v0; | ||||
|         const Vertex p01 = v1; | ||||
|         const Vertex p02 = v2; | ||||
|         const Vertex p03 = v3; | ||||
|          | ||||
|         const Vertex p10 = lerp(p00,p01,t); | ||||
|         const Vertex p11 = lerp(p01,p02,t); | ||||
|         const Vertex p12 = lerp(p02,p03,t); | ||||
|         const Vertex p20 = lerp(p10,p11,t); | ||||
|         const Vertex p21 = lerp(p11,p12,t); | ||||
|         const Vertex p30 = lerp(p20,p21,t); | ||||
|          | ||||
|         new (&left ) CubicBezierCurve(p00,p10,p20,p30); | ||||
|         new (&right) CubicBezierCurve(p30,p21,p12,p03); | ||||
|       } | ||||
|        | ||||
|       __forceinline CubicBezierCurve<Vec2vfx> split() const | ||||
|       { | ||||
|         const float u0 = 0.0f, u1 = 1.0f; | ||||
|         const float dscale = (u1-u0)*(1.0f/(3.0f*(VSIZEX-1))); | ||||
|         const vfloatx vu0 = lerp(u0,u1,vfloatx(StepTy())*(1.0f/(VSIZEX-1))); | ||||
|         Vec2vfx P0, dP0du; evalN(vu0,P0,dP0du); dP0du = dP0du * Vec2vfx(dscale); | ||||
|         const Vec2vfx P3 = shift_right_1(P0); | ||||
|         const Vec2vfx dP3du = shift_right_1(dP0du);  | ||||
|         const Vec2vfx P1 = P0 + dP0du;  | ||||
|         const Vec2vfx P2 = P3 - dP3du; | ||||
|         return CubicBezierCurve<Vec2vfx>(P0,P1,P2,P3); | ||||
|       } | ||||
|        | ||||
|       __forceinline CubicBezierCurve<Vec2vfx> split(const BBox1f& u) const | ||||
|       { | ||||
|         const float u0 = u.lower, u1 = u.upper; | ||||
|         const float dscale = (u1-u0)*(1.0f/(3.0f*(VSIZEX-1))); | ||||
|         const vfloatx vu0 = lerp(u0,u1,vfloatx(StepTy())*(1.0f/(VSIZEX-1))); | ||||
|         Vec2vfx P0, dP0du; evalN(vu0,P0,dP0du); dP0du = dP0du * Vec2vfx(dscale); | ||||
|         const Vec2vfx P3 = shift_right_1(P0); | ||||
|         const Vec2vfx dP3du = shift_right_1(dP0du);  | ||||
|         const Vec2vfx P1 = P0 + dP0du;  | ||||
|         const Vec2vfx P2 = P3 - dP3du; | ||||
|         return CubicBezierCurve<Vec2vfx>(P0,P1,P2,P3); | ||||
|       } | ||||
| 
 | ||||
|       template<int W> | ||||
|       __forceinline CubicBezierCurve<Vec2vf<W>> split(const BBox1f& u, int i, int N) const | ||||
|       { | ||||
|         const float u0 = u.lower, u1 = u.upper; | ||||
|         const float dscale = (u1-u0)*(1.0f/(3.0f*N)); | ||||
|         const vfloat<W> vu0 = lerp(u0,u1,(vfloat<W>(i)+vfloat<W>(StepTy()))*(1.0f/N)); | ||||
|         Vec2vf<W> P0, dP0du; evalN(vu0,P0,dP0du); dP0du = dP0du * Vec2vf<W>(dscale); | ||||
|         const Vec2vf<W> P3 = shift_right_1(P0); | ||||
|         const Vec2vf<W> dP3du = shift_right_1(dP0du);  | ||||
|         const Vec2vf<W> P1 = P0 + dP0du;  | ||||
|         const Vec2vf<W> P2 = P3 - dP3du; | ||||
|         return CubicBezierCurve<Vec2vf<W>>(P0,P1,P2,P3); | ||||
|       } | ||||
| 
 | ||||
|        __forceinline CubicBezierCurve<Vec2f> split1(const BBox1f& u, int i, int N) const | ||||
|       { | ||||
|         const float u0 = u.lower, u1 = u.upper; | ||||
|         const float dscale = (u1-u0)*(1.0f/(3.0f*N)); | ||||
|         const float vu0 = lerp(u0,u1,(float(i)+0)*(1.0f/N)); | ||||
|         const float vu1 = lerp(u0,u1,(float(i)+1)*(1.0f/N)); | ||||
|         Vec2fa P0, dP0du; eval(vu0,P0,dP0du); dP0du = dP0du * Vec2fa(dscale); | ||||
|         Vec2fa P3, dP3du; eval(vu1,P3,dP3du); dP3du = dP3du * Vec2fa(dscale); | ||||
|         const Vec2fa P1 = P0 + dP0du;  | ||||
|         const Vec2fa P2 = P3 - dP3du; | ||||
|         return CubicBezierCurve<Vec2f>(P0,P1,P2,P3); | ||||
|       } | ||||
|        | ||||
|       __forceinline void eval(float t, Vertex& p, Vertex& dp) const | ||||
|       { | ||||
|         const Vertex p00 = v0; | ||||
|         const Vertex p01 = v1; | ||||
|         const Vertex p02 = v2; | ||||
|         const Vertex p03 = v3; | ||||
|          | ||||
|         const Vertex p10 = lerp(p00,p01,t); | ||||
|         const Vertex p11 = lerp(p01,p02,t); | ||||
|         const Vertex p12 = lerp(p02,p03,t); | ||||
|         const Vertex p20 = lerp(p10,p11,t); | ||||
|         const Vertex p21 = lerp(p11,p12,t); | ||||
|         const Vertex p30 = lerp(p20,p21,t); | ||||
|          | ||||
|         p = p30; | ||||
|         dp = Vertex(3.0f)*(p21-p20); | ||||
|       } | ||||
| 
 | ||||
| #if 0 | ||||
|       __forceinline Vertex eval(float t) const | ||||
|       { | ||||
|         const Vertex p00 = v0; | ||||
|         const Vertex p01 = v1; | ||||
|         const Vertex p02 = v2; | ||||
|         const Vertex p03 = v3; | ||||
|          | ||||
|         const Vertex p10 = lerp(p00,p01,t); | ||||
|         const Vertex p11 = lerp(p01,p02,t); | ||||
|         const Vertex p12 = lerp(p02,p03,t); | ||||
|         const Vertex p20 = lerp(p10,p11,t); | ||||
|         const Vertex p21 = lerp(p11,p12,t); | ||||
|         const Vertex p30 = lerp(p20,p21,t); | ||||
|          | ||||
|         return p30; | ||||
|       } | ||||
| #else | ||||
|       __forceinline Vertex eval(const float t) const  | ||||
|       { | ||||
|         const Vec4<float> b = BezierBasis::eval(t); | ||||
|         return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); | ||||
|       } | ||||
| #endif | ||||
|        | ||||
|       __forceinline Vertex eval_dt(float t) const | ||||
|       { | ||||
|         const Vertex p00 = v1-v0; | ||||
|         const Vertex p01 = v2-v1; | ||||
|         const Vertex p02 = v3-v2; | ||||
|         const Vertex p10 = lerp(p00,p01,t); | ||||
|         const Vertex p11 = lerp(p01,p02,t); | ||||
|         const Vertex p20 = lerp(p10,p11,t); | ||||
|         return Vertex(3.0f)*p20; | ||||
|       } | ||||
| 
 | ||||
|       __forceinline Vertex eval_du(const float t) const | ||||
|       { | ||||
|         const Vec4<float> b = BezierBasis::derivative(t); | ||||
|         return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); | ||||
|       } | ||||
| 
 | ||||
|       __forceinline Vertex eval_dudu(const float t) const  | ||||
|       { | ||||
|         const Vec4<float> b = BezierBasis::derivative2(t); | ||||
|         return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); | ||||
|       } | ||||
|        | ||||
|       __forceinline void evalN(const vfloatx& t, Vec2vfx& p, Vec2vfx& dp) const | ||||
|       { | ||||
|         const Vec2vfx p00 = v0; | ||||
|         const Vec2vfx p01 = v1; | ||||
|         const Vec2vfx p02 = v2; | ||||
|         const Vec2vfx p03 = v3; | ||||
|          | ||||
|         const Vec2vfx p10 = lerp(p00,p01,t); | ||||
|         const Vec2vfx p11 = lerp(p01,p02,t); | ||||
|         const Vec2vfx p12 = lerp(p02,p03,t); | ||||
|          | ||||
|         const Vec2vfx p20 = lerp(p10,p11,t); | ||||
|         const Vec2vfx p21 = lerp(p11,p12,t); | ||||
|          | ||||
|         const Vec2vfx p30 = lerp(p20,p21,t); | ||||
|          | ||||
|         p = p30; | ||||
|         dp = vfloatx(3.0f)*(p21-p20); | ||||
|       } | ||||
| 
 | ||||
|       __forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const | ||||
|       { | ||||
|         const Vertex p00 = v0; | ||||
|         const Vertex p01 = v1; | ||||
|         const Vertex p02 = v2; | ||||
|         const Vertex p03 = v3; | ||||
|         const Vertex p10 = lerp(p00,p01,t); | ||||
|         const Vertex p11 = lerp(p01,p02,t); | ||||
|         const Vertex p12 = lerp(p02,p03,t); | ||||
|         const Vertex p20 = lerp(p10,p11,t); | ||||
|         const Vertex p21 = lerp(p11,p12,t); | ||||
|         const Vertex p30 = lerp(p20,p21,t); | ||||
|         p = p30; | ||||
|         dp = 3.0f*(p21-p20); | ||||
|         ddp = eval_dudu(t); | ||||
|       } | ||||
|        | ||||
|       __forceinline CubicBezierCurve clip(const Interval1f& u1) const | ||||
|       { | ||||
|         Vertex f0,df0; eval(u1.lower,f0,df0); | ||||
|         Vertex f1,df1; eval(u1.upper,f1,df1); | ||||
|         float s = u1.upper-u1.lower; | ||||
|         return CubicBezierCurve(f0,f0+s*(1.0f/3.0f)*df0,f1-s*(1.0f/3.0f)*df1,f1); | ||||
|       } | ||||
|        | ||||
|       __forceinline QuadraticBezierCurve<Vertex> derivative() const | ||||
|       { | ||||
|         const Vertex q0 = 3.0f*(v1-v0); | ||||
|         const Vertex q1 = 3.0f*(v2-v1); | ||||
|         const Vertex q2 = 3.0f*(v3-v2); | ||||
|         return QuadraticBezierCurve<Vertex>(q0,q1,q2); | ||||
|       } | ||||
|        | ||||
|       __forceinline BBox<Vertex> derivative_bounds(const Interval1f& u1) const | ||||
|       { | ||||
|         Vertex f0,df0; eval(u1.lower,f0,df0); | ||||
|         Vertex f3,df3; eval(u1.upper,f3,df3); | ||||
|         const float s = u1.upper-u1.lower; | ||||
|         const Vertex f1 = f0+s*(1.0f/3.0f)*df0; | ||||
|         const Vertex f2 = f3-s*(1.0f/3.0f)*df3; | ||||
|         const Vertex q0 = s*df0; | ||||
|         const Vertex q1 = 3.0f*(f2-f1); | ||||
|         const Vertex q2 = s*df3; | ||||
|         return merge(BBox<Vertex>(q0),BBox<Vertex>(q1),BBox<Vertex>(q2)); | ||||
|       } | ||||
|        | ||||
|       template<int M> | ||||
|       __forceinline Vec4vf<M> veval(const vfloat<M>& t) const  | ||||
|       { | ||||
|         const Vec4vf<M> b = BezierBasis::eval(t); | ||||
|         return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); | ||||
|       } | ||||
| 
 | ||||
|       template<int M> | ||||
|       __forceinline Vec4vf<M> veval_du(const vfloat<M>& t) const  | ||||
|       { | ||||
|         const Vec4vf<M> b = BezierBasis::derivative(t); | ||||
|         return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); | ||||
|       } | ||||
| 
 | ||||
|       template<int M> | ||||
|       __forceinline Vec4vf<M> veval_dudu(const vfloat<M>& t) const  | ||||
|       { | ||||
|         const Vec4vf<M> b = BezierBasis::derivative2(t); | ||||
|         return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); | ||||
|       } | ||||
|        | ||||
|       template<int M, typename Vec> | ||||
|       __forceinline void veval(const vfloat<M>& t, Vec& p, Vec& dp) const | ||||
|       { | ||||
|         const Vec p00 = v0; | ||||
|         const Vec p01 = v1; | ||||
|         const Vec p02 = v2; | ||||
|         const Vec p03 = v3; | ||||
|          | ||||
|         const Vec p10 = lerp(p00,p01,t); | ||||
|         const Vec p11 = lerp(p01,p02,t); | ||||
|         const Vec p12 = lerp(p02,p03,t); | ||||
|         const Vec p20 = lerp(p10,p11,t); | ||||
|         const Vec p21 = lerp(p11,p12,t); | ||||
|         const Vec p30 = lerp(p20,p21,t); | ||||
|          | ||||
|         p = p30; | ||||
|         dp = vfloat<M>(3.0f)*(p21-p20); | ||||
|       } | ||||
|        | ||||
|       template<int M, typename Vec = Vec4vf<M>> | ||||
|       __forceinline Vec eval0(const int ofs, const int size) const | ||||
|       { | ||||
|         assert(size <= PrecomputedBezierBasis::N); | ||||
|         assert(ofs <= size); | ||||
| #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) | ||||
|         assert(size > 0); | ||||
|         const vfloat<M> t = (vfloat<M>(step) + vfloat<M>(ofs+0))*rcp(float(size)); | ||||
|         Vec p,dp; veval<M>(t,p,dp); | ||||
|         return p; | ||||
| #else | ||||
|         return madd(vfloat<M>::loadu(&bezier_basis0.c0[size][ofs]), Vec(v0), | ||||
|                     madd(vfloat<M>::loadu(&bezier_basis0.c1[size][ofs]), Vec(v1), | ||||
|                          madd(vfloat<M>::loadu(&bezier_basis0.c2[size][ofs]), Vec(v2), | ||||
|                               vfloat<M>::loadu(&bezier_basis0.c3[size][ofs]) * Vec(v3)))); | ||||
| #endif | ||||
|       } | ||||
|        | ||||
|       template<int M, typename Vec = Vec4vf<M>> | ||||
|       __forceinline Vec eval1(const int ofs, const int size) const | ||||
|       { | ||||
|         assert(size <= PrecomputedBezierBasis::N); | ||||
|         assert(ofs <= size); | ||||
| #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) | ||||
|         assert(size > 0); | ||||
|         const vfloat<M> t = (vfloat<M>(step) + vfloat<M>(ofs+1))*rcp(float(size)); | ||||
|         Vec p,dp; veval<M>(t,p,dp); | ||||
|         return p; | ||||
| #else | ||||
|         return madd(vfloat<M>::loadu(&bezier_basis1.c0[size][ofs]), Vec(v0),  | ||||
|                     madd(vfloat<M>::loadu(&bezier_basis1.c1[size][ofs]), Vec(v1), | ||||
|                          madd(vfloat<M>::loadu(&bezier_basis1.c2[size][ofs]), Vec(v2), | ||||
|                               vfloat<M>::loadu(&bezier_basis1.c3[size][ofs]) * Vec(v3)))); | ||||
| #endif | ||||
|       } | ||||
|        | ||||
|       template<int M, typename Vec = Vec4vf<M>> | ||||
|       __forceinline Vec derivative0(const int ofs, const int size) const | ||||
|       { | ||||
|         assert(size <= PrecomputedBezierBasis::N); | ||||
|         assert(ofs <= size); | ||||
| #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) | ||||
|         assert(size > 0); | ||||
|         const vfloat<M> t = (vfloat<M>(step) + vfloat<M>(ofs+0))*rcp(float(size)); | ||||
|         Vec p,dp; veval<M>(t,p,dp); | ||||
|         return dp; | ||||
| #else | ||||
|         return madd(vfloat<M>::loadu(&bezier_basis0.d0[size][ofs]), Vec(v0), | ||||
|                     madd(vfloat<M>::loadu(&bezier_basis0.d1[size][ofs]), Vec(v1), | ||||
|                          madd(vfloat<M>::loadu(&bezier_basis0.d2[size][ofs]), Vec(v2), | ||||
|                               vfloat<M>::loadu(&bezier_basis0.d3[size][ofs]) * Vec(v3)))); | ||||
| #endif | ||||
|       } | ||||
|        | ||||
|       template<int M, typename Vec = Vec4vf<M>> | ||||
|       __forceinline Vec derivative1(const int ofs, const int size) const | ||||
|       { | ||||
|         assert(size <= PrecomputedBezierBasis::N); | ||||
|         assert(ofs <= size); | ||||
| #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) | ||||
|         assert(size > 0); | ||||
|         const vfloat<M> t = (vfloat<M>(step) + vfloat<M>(ofs+1))*rcp(float(size)); | ||||
|         Vec p,dp; veval<M>(t,p,dp); | ||||
|         return dp; | ||||
| #else | ||||
|         return madd(vfloat<M>::loadu(&bezier_basis1.d0[size][ofs]), Vec(v0), | ||||
|                     madd(vfloat<M>::loadu(&bezier_basis1.d1[size][ofs]), Vec(v1), | ||||
|                          madd(vfloat<M>::loadu(&bezier_basis1.d2[size][ofs]), Vec(v2), | ||||
|                               vfloat<M>::loadu(&bezier_basis1.d3[size][ofs]) * Vec(v3)))); | ||||
| #endif | ||||
|       } | ||||
| 
 | ||||
|       /* calculates bounds of bezier curve geometry */ | ||||
|       __forceinline BBox3fa accurateBounds() const | ||||
|       { | ||||
|         const int N = 7; | ||||
|         const float scale = 1.0f/(3.0f*(N-1)); | ||||
|         Vec3vfx pl(pos_inf), pu(neg_inf); | ||||
|         for (int i=0; i<=N; i+=VSIZEX) | ||||
|         { | ||||
|           vintx vi = vintx(i)+vintx(StepTy()); | ||||
|           vboolx valid = vi <= vintx(N); | ||||
|           const Vec3vfx p  = eval0<VSIZEX,Vec3vf<VSIZEX>>(i,N); | ||||
|           const Vec3vfx dp = derivative0<VSIZEX,Vec3vf<VSIZEX>>(i,N); | ||||
|           const Vec3vfx pm = p-Vec3vfx(scale)*select(vi!=vintx(0),dp,Vec3vfx(zero)); | ||||
|           const Vec3vfx pp = p+Vec3vfx(scale)*select(vi!=vintx(N),dp,Vec3vfx(zero)); | ||||
|           pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min
 | ||||
|           pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min
 | ||||
|         } | ||||
|         const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); | ||||
|         const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); | ||||
|         return BBox3fa(lower,upper); | ||||
|       } | ||||
|        | ||||
|       /* calculates bounds of bezier curve geometry */ | ||||
|       __forceinline BBox3fa accurateRoundBounds() const | ||||
|       { | ||||
|         const int N = 7; | ||||
|         const float scale = 1.0f/(3.0f*(N-1)); | ||||
|         Vec4vfx pl(pos_inf), pu(neg_inf); | ||||
|         for (int i=0; i<=N; i+=VSIZEX) | ||||
|         { | ||||
|           vintx vi = vintx(i)+vintx(StepTy()); | ||||
|           vboolx valid = vi <= vintx(N); | ||||
|           const Vec4vfx p  = eval0<VSIZEX>(i,N); | ||||
|           const Vec4vfx dp = derivative0<VSIZEX>(i,N); | ||||
|           const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero)); | ||||
|           const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero)); | ||||
|           pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min
 | ||||
|           pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min
 | ||||
|         } | ||||
|         const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); | ||||
|         const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); | ||||
|         const float r_min = reduce_min(pl.w); | ||||
|         const float r_max = reduce_max(pu.w); | ||||
|         const Vec3fa upper_r = Vec3fa(max(abs(r_min),abs(r_max))); | ||||
|         return enlarge(BBox3fa(lower,upper),upper_r); | ||||
|       } | ||||
|        | ||||
|       /* calculates bounds when tessellated into N line segments */ | ||||
|       __forceinline BBox3fa accurateFlatBounds(int N) const | ||||
|       { | ||||
|         if (likely(N == 4)) | ||||
|         { | ||||
|           const Vec4vf4 pi = eval0<4>(0,4); | ||||
|           const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z)); | ||||
|           const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z)); | ||||
|           const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w))); | ||||
|           return enlarge(BBox3fa(min(lower,v3),max(upper,v3)),max(upper_r,Vec3fa(abs(v3.w)))); | ||||
|         }  | ||||
|         else | ||||
|         { | ||||
|           Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f); | ||||
|           for (int i=0; i<N; i+=VSIZEX) | ||||
|           { | ||||
|             vboolx valid = vintx(i)+vintx(StepTy()) < vintx(N); | ||||
|             const Vec4vfx pi = eval0<VSIZEX>(i,N); | ||||
|              | ||||
|             pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min
 | ||||
|             pl.y = select(valid,min(pl.y,pi.y),pl.y);  | ||||
|             pl.z = select(valid,min(pl.z,pi.z),pl.z);  | ||||
|              | ||||
|             pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min
 | ||||
|             pu.y = select(valid,max(pu.y,pi.y),pu.y);  | ||||
|             pu.z = select(valid,max(pu.z,pi.z),pu.z);  | ||||
|              | ||||
|             ru   = select(valid,max(ru,abs(pi.w)),ru); | ||||
|           } | ||||
|           const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); | ||||
|           const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); | ||||
|           const Vec3fa upper_r(reduce_max(ru)); | ||||
|           return enlarge(BBox3fa(min(lower,v3),max(upper,v3)),max(upper_r,Vec3fa(abs(v3.w)))); | ||||
|         } | ||||
|       } | ||||
|        | ||||
|       friend __forceinline embree_ostream operator<<(embree_ostream cout, const CubicBezierCurve& curve) { | ||||
|         return cout << "CubicBezierCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }"; | ||||
|       } | ||||
|     }; | ||||
| 
 | ||||
| #if defined(__AVX__) | ||||
|   template<> | ||||
|     __forceinline CubicBezierCurve<vfloat4> CubicBezierCurve<vfloat4>::clip(const Interval1f& u1) const | ||||
|   { | ||||
|     const vfloat8 p00 = vfloat8(v0); | ||||
|     const vfloat8 p01 = vfloat8(v1); | ||||
|     const vfloat8 p02 = vfloat8(v2); | ||||
|     const vfloat8 p03 = vfloat8(v3); | ||||
| 
 | ||||
|     const vfloat8 t(vfloat4(u1.lower),vfloat4(u1.upper)); | ||||
|     const vfloat8 p10 = lerp(p00,p01,t); | ||||
|     const vfloat8 p11 = lerp(p01,p02,t); | ||||
|     const vfloat8 p12 = lerp(p02,p03,t); | ||||
|     const vfloat8 p20 = lerp(p10,p11,t); | ||||
|     const vfloat8 p21 = lerp(p11,p12,t); | ||||
|     const vfloat8 p30 = lerp(p20,p21,t); | ||||
|      | ||||
|     const vfloat8 f01  = p30; | ||||
|     const vfloat8 df01 = vfloat8(3.0f)*(p21-p20); | ||||
|          | ||||
|     const vfloat4 f0  = extract4<0>(f01),  f1  = extract4<1>(f01); | ||||
|     const vfloat4 df0 = extract4<0>(df01), df1 = extract4<1>(df01); | ||||
|     const float s = u1.upper-u1.lower; | ||||
|     return CubicBezierCurve(f0,f0+s*(1.0f/3.0f)*df0,f1-s*(1.0f/3.0f)*df1,f1); | ||||
|   } | ||||
| #endif | ||||
|    | ||||
|   template<typename Vertex> using BezierCurveT = CubicBezierCurve<Vertex>; | ||||
|    | ||||
|   typedef CubicBezierCurve<float> CubicBezierCurve1f; | ||||
|   typedef CubicBezierCurve<Vec2fa> CubicBezierCurve2fa; | ||||
|   typedef CubicBezierCurve<Vec3fa> CubicBezierCurve3fa; | ||||
|   typedef CubicBezierCurve<Vec3fa> BezierCurve3fa; | ||||
|   typedef CubicBezierCurve<Vec3ff> BezierCurve3ff; | ||||
|    | ||||
|   template<> __forceinline int CubicBezierCurve<float>::maxRoots() const | ||||
|   { | ||||
|     float eps = 1E-4f; | ||||
|     bool neg0 = v0 <= 0.0f; bool zero0 = fabs(v0) < eps; | ||||
|     bool neg1 = v1 <= 0.0f; bool zero1 = fabs(v1) < eps; | ||||
|     bool neg2 = v2 <= 0.0f; bool zero2 = fabs(v2) < eps; | ||||
|     bool neg3 = v3 <= 0.0f; bool zero3 = fabs(v3) < eps; | ||||
|     return (neg0 != neg1 || zero0) + (neg1 != neg2 || zero1) + (neg2 != neg3 || zero2 || zero3); | ||||
|   } | ||||
|    | ||||
|   template<> __forceinline int CubicBezierCurve<Interval1f>::maxRoots() const { | ||||
|     return numRoots(v0,v1) + numRoots(v1,v2) + numRoots(v2,v3); | ||||
|   } | ||||
| 
 | ||||
|   struct CurveGeometry; // FIXME: this code should move !
 | ||||
|   template<typename CurveGeometry> | ||||
|   __forceinline CubicBezierCurve<Vec3ff> enlargeRadiusToMinWidth(const RayQueryContext* context, const CurveGeometry* geom, const Vec3fa& ray_org, const CubicBezierCurve<Vec3ff>& curve) | ||||
|   { | ||||
|     return CubicBezierCurve<Vec3ff>(enlargeRadiusToMinWidth(context,geom,ray_org,curve.v0), | ||||
|                                     enlargeRadiusToMinWidth(context,geom,ray_org,curve.v1), | ||||
|                                     enlargeRadiusToMinWidth(context,geom,ray_org,curve.v2), | ||||
|                                     enlargeRadiusToMinWidth(context,geom,ray_org,curve.v3)); | ||||
|   } | ||||
| } | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue