Fix bugs
This commit is contained in:
parent
5958307f13
commit
9e328cf9e3
4 changed files with 133 additions and 115 deletions
|
|
@ -2,6 +2,7 @@
|
|||
#include "helper.hpp"
|
||||
#include "application_integrator.h"
|
||||
#include "simd/vboolf4_sse2.h"
|
||||
#include "sampler.h"
|
||||
|
||||
|
||||
class Application3 : public ApplicationIntegrator {
|
||||
|
|
|
|||
|
|
@ -1,14 +1,13 @@
|
|||
#include "application_integrator.h"
|
||||
#include "algorithms/parallel_for.h"
|
||||
#include "imgui.h"
|
||||
#include "math/vec2.h"
|
||||
#include "math/vec3fa.h"
|
||||
#include "random_sampler.hpp"
|
||||
#include "random_sampler_wrapper.hpp"
|
||||
#include "sampler.h"
|
||||
#include "tasking/taskschedulerinternal.h"
|
||||
#include <atomic>
|
||||
#include <mutex>
|
||||
#include <vector>
|
||||
|
||||
ApplicationIntegrator::ApplicationIntegrator(int argc, char **argv,
|
||||
const std::string &name)
|
||||
|
|
@ -20,8 +19,6 @@ void ApplicationIntegrator::drawGUI() {
|
|||
|
||||
bool bDirty = false;
|
||||
|
||||
if (ImGui::SliderInt("num chains", &num_chains, 1, 2000))
|
||||
resetRender();
|
||||
|
||||
if (ImGui::SliderInt("chain lengths", &chain_lengths, 1, 200000))
|
||||
resetRender();
|
||||
|
|
@ -54,6 +51,10 @@ void ApplicationIntegrator::resetRender() {
|
|||
std::lock_guard<std::mutex> guard(large_step_global_luminance_mutex);
|
||||
large_step_global_luminance = 0.0;
|
||||
|
||||
for (size_t i = 0; i < NUM_CHAINS; i++) {
|
||||
chains[i] = MLTRandomSampler(small_step_size, large_step_probability);
|
||||
chains[i].init(i);
|
||||
}
|
||||
if (bMetropolis) {
|
||||
data.film.count = false;
|
||||
} else {
|
||||
|
|
@ -73,102 +74,6 @@ void ApplicationIntegrator::render(int *pixels, int width, int height,
|
|||
}
|
||||
}
|
||||
|
||||
class MLTRandomSampler : public RandomSamplerWrapper {
|
||||
private:
|
||||
size_t index;
|
||||
std::vector<float> data;
|
||||
std::vector<float> new_data;
|
||||
std::vector<size_t> last_changed;
|
||||
size_t time;
|
||||
size_t last_large_step;
|
||||
float small_step_size;
|
||||
float large_step_probability;
|
||||
bool large_step;
|
||||
|
||||
float normalize(float x) {
|
||||
if (x < 0.0) {
|
||||
return x + 1.0;
|
||||
} else if (x >= 1.0) {
|
||||
return x - 1.0;
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
public:
|
||||
MLTRandomSampler(float small_step_size, float large_step_probability)
|
||||
: index(0), data({}), last_changed({}), time(0), last_large_step(0),
|
||||
small_step_size(small_step_size),
|
||||
large_step_probability(large_step_probability) {}
|
||||
|
||||
void init(int id) override { RandomSampler_init(sampler, id); }
|
||||
|
||||
void accept() {
|
||||
time++;
|
||||
for (size_t i = 0; i < new_data.size(); i++) {
|
||||
if (i >= data.size()) {
|
||||
data.push_back(new_data[i]);
|
||||
last_changed.push_back(time);
|
||||
} else {
|
||||
data.at(i) = new_data.at(i);
|
||||
last_changed.at(i) = time;
|
||||
}
|
||||
}
|
||||
new_data.clear();
|
||||
}
|
||||
|
||||
void new_ray(bool l) {
|
||||
large_step = l;
|
||||
}
|
||||
|
||||
bool is_large_step() { return large_step; }
|
||||
|
||||
float get1D() override {
|
||||
if (is_large_step()) {
|
||||
float r = RandomSampler_get1D(sampler);
|
||||
new_data.push_back(r);
|
||||
index++;
|
||||
return r;
|
||||
} else {
|
||||
if (index >= data.size()) {
|
||||
float r = RandomSampler_get1D(sampler);
|
||||
data.push_back(r);
|
||||
last_changed.push_back(time);
|
||||
new_data.push_back(r);
|
||||
index++;
|
||||
return r;
|
||||
} else if (last_changed.at(index) < last_large_step) {
|
||||
float r = RandomSampler_get1D(sampler);
|
||||
data.at(index) = r;
|
||||
last_changed.at(index) = time;
|
||||
new_data.push_back(r);
|
||||
index++;
|
||||
return r;
|
||||
} else {
|
||||
size_t steps = time - last_changed.at(index);
|
||||
float d = data.at(index);
|
||||
for (size_t i = 0; i < steps; i++) {
|
||||
float r = RandomSampler_get1D(sampler);
|
||||
float o = r * small_step_size - (small_step_size / 2.0);
|
||||
d = normalize(d + o);
|
||||
}
|
||||
data.at(index) = d;
|
||||
last_changed.at(index) = time;
|
||||
|
||||
float r = RandomSampler_get1D(sampler);
|
||||
float o = r * small_step_size - (small_step_size / 2.0);
|
||||
d = normalize(d + o);
|
||||
|
||||
new_data.push_back(d);
|
||||
|
||||
return d;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Vec2f get2D() override { return Vec2f(get1D(), get1D()); }
|
||||
|
||||
Vec3fa get3D() override { return Vec3fa(get1D(), get1D(), get1D()); }
|
||||
};
|
||||
|
||||
void ApplicationIntegrator::mltRender(int *pixels, int width, int height,
|
||||
float time, const ISPCCamera &camera) {
|
||||
|
|
@ -183,39 +88,37 @@ void ApplicationIntegrator::mltRender(int *pixels, int width, int height,
|
|||
// int index_of_the_sampled_bin = d.SampleDiscrete(rng.get1D());
|
||||
|
||||
|
||||
parallel_for(size_t(0), size_t(num_chains), [&](const range<size_t> &range) {
|
||||
parallel_for(size_t(0), size_t(NUM_CHAINS), [&](const range<size_t> &range) {
|
||||
const int threadIndex = (int)TaskScheduler::threadIndex();
|
||||
float large_luminance_outer_sum = 0.0;
|
||||
for (size_t i = range.begin(); i < range.end(); i++) {
|
||||
MLTRandomSampler sampler(small_step_size, large_step_probability);
|
||||
sampler.init(data.frame_count * num_chains + i);
|
||||
|
||||
float last_l = 0.0;
|
||||
|
||||
float large_luminance_sum = 0.0;
|
||||
|
||||
for (size_t j = 0; j < chain_lengths; j++) {
|
||||
|
||||
sampler.new_ray(RandomSampler_get1D(sampler.sampler) < large_step_probability);
|
||||
chains[i].new_ray(RandomSampler_get1D(chains[i].sampler) < large_step_probability);
|
||||
|
||||
float x = sampler.get1D() * width;
|
||||
float y = sampler.get1D() * height;
|
||||
float x = chains[i].get1D() * width;
|
||||
float y = chains[i].get1D() * height;
|
||||
|
||||
int x_pixel = x;
|
||||
int y_pixel = y;
|
||||
|
||||
Vec3f f = renderPixel(x, y, camera, g_stats[threadIndex], sampler);
|
||||
Vec3f f = renderPixel(x, y, camera, g_stats[threadIndex], chains[i]);
|
||||
float l = luminance(f);
|
||||
|
||||
if (sampler.is_large_step()) {
|
||||
if (chains[i].is_large_step()) {
|
||||
large_luminance_sum += l;
|
||||
luminance_count.fetch_add(1, std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
if ((last_l == 0.0 && l > 0.0) || (last_l > 0.0 && RandomSampler_get1D(sampler.sampler) < l / last_l)) {
|
||||
if ((last_l[i] == 0.0 && l > 0.0) || (last_l[i] > 0.0 && RandomSampler_get1D(chains[i].sampler) < l / last_l[i])) {
|
||||
data.film.addSplat(x_pixel, y_pixel, f / l);
|
||||
sampler.accept();
|
||||
// printf("accept %d\n", chains[i].is_large_step());
|
||||
chains[i].accept();
|
||||
accepted.fetch_add(1, std::memory_order_relaxed);
|
||||
last_l[i] = l;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,8 +1,9 @@
|
|||
#pragma once
|
||||
#include "helper.hpp"
|
||||
#include "distribution.hpp"
|
||||
#include "sampler.h"
|
||||
|
||||
|
||||
#define NUM_CHAINS 20
|
||||
|
||||
class ApplicationIntegrator: public Application {
|
||||
public:
|
||||
|
|
@ -33,8 +34,9 @@ protected:
|
|||
std::atomic<size_t> luminance_count = 0;
|
||||
float large_step_global_luminance = 0.0;
|
||||
std::mutex large_step_global_luminance_mutex;
|
||||
int num_chains = 100;
|
||||
MLTRandomSampler chains[NUM_CHAINS];
|
||||
float last_l[NUM_CHAINS];
|
||||
int chain_lengths = 100000;
|
||||
float small_step_size = 0.01;
|
||||
float large_step_probability = 0.2;
|
||||
float large_step_probability = 0.02;
|
||||
};
|
||||
|
|
|
|||
112
Assignments/Assignment3/sampler.h
Normal file
112
Assignments/Assignment3/sampler.h
Normal file
|
|
@ -0,0 +1,112 @@
|
|||
#pragma once
|
||||
#include <cstddef>
|
||||
#include <vector>
|
||||
#include "random_sampler_wrapper.hpp"
|
||||
#include "math/vec2.h"
|
||||
#include "math/vec3fa.h"
|
||||
|
||||
class MLTRandomSampler : public embree::RandomSamplerWrapper {
|
||||
private:
|
||||
size_t index;
|
||||
std::vector<float> data;
|
||||
std::vector<float> new_data;
|
||||
std::vector<size_t> last_changed;
|
||||
size_t time;
|
||||
size_t last_large_step;
|
||||
float small_step_size;
|
||||
float large_step_probability;
|
||||
bool large_step;
|
||||
|
||||
float normalize(float x) {
|
||||
if (x < 0.0) {
|
||||
return x + 1.0;
|
||||
} else if (x >= 1.0) {
|
||||
return x - 1.0;
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
public:
|
||||
MLTRandomSampler() {
|
||||
|
||||
}
|
||||
MLTRandomSampler(float small_step_size, float large_step_probability)
|
||||
: index(0), data({}), last_changed({}), time(0), last_large_step(0),
|
||||
small_step_size(small_step_size),
|
||||
large_step_probability(large_step_probability) {}
|
||||
|
||||
void init(int id) override { RandomSampler_init(sampler, id); }
|
||||
|
||||
void accept() {
|
||||
time++;
|
||||
for (size_t i = 0; i < new_data.size(); i++) {
|
||||
if (i >= data.size()) {
|
||||
data.push_back(new_data[i]);
|
||||
last_changed.push_back(time);
|
||||
} else {
|
||||
data.at(i) = new_data.at(i);
|
||||
last_changed.at(i) = time;
|
||||
}
|
||||
}
|
||||
if (large_step)
|
||||
last_large_step = time;
|
||||
index = 0;
|
||||
new_data.clear();
|
||||
}
|
||||
|
||||
void new_ray(bool l) {
|
||||
large_step = l;
|
||||
}
|
||||
|
||||
bool is_large_step() { return large_step; }
|
||||
|
||||
float get1D() override {
|
||||
if (is_large_step()) {
|
||||
float r = RandomSampler_get1D(sampler);
|
||||
new_data.push_back(r);
|
||||
index++;
|
||||
return r;
|
||||
} else {
|
||||
if (index >= data.size()) {
|
||||
float r = RandomSampler_get1D(sampler);
|
||||
data.push_back(r);
|
||||
last_changed.push_back(time);
|
||||
new_data.push_back(r);
|
||||
index++;
|
||||
return r;
|
||||
}
|
||||
// printf("%d, %d\n", index, last_large_step);
|
||||
if (last_changed.at(index) < last_large_step) {
|
||||
float r = RandomSampler_get1D(sampler);
|
||||
data.at(index) = r;
|
||||
last_changed.at(index) = time;
|
||||
new_data.push_back(r);
|
||||
index++;
|
||||
return r;
|
||||
} else {
|
||||
size_t steps = time - last_changed.at(index);
|
||||
float d = data.at(index);
|
||||
for (size_t i = 0; i < steps; i++) {
|
||||
float r = RandomSampler_get1D(sampler);
|
||||
float o = r * small_step_size - (small_step_size / 2.0);
|
||||
d = normalize(d + o);
|
||||
}
|
||||
data.at(index) = d;
|
||||
last_changed.at(index) = time;
|
||||
|
||||
float r = RandomSampler_get1D(sampler);
|
||||
float o = r * small_step_size - (small_step_size / 2.0);
|
||||
d = normalize(d + o);
|
||||
|
||||
new_data.push_back(d);
|
||||
// printf("%f, %f\n", data.at(index), d);
|
||||
index++;
|
||||
return d;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
embree::Vec2f get2D() override { return embree::Vec2f(get1D(), get1D()); }
|
||||
|
||||
embree::Vec3fa get3D() override { return embree::Vec3fa(get1D(), get1D(), get1D()); }
|
||||
};
|
||||
Loading…
Add table
Add a link
Reference in a new issue