Assignment2 added.

This commit is contained in:
hal8174 2024-05-14 11:47:15 +02:00
parent 025341336d
commit 1948277dbd
19 changed files with 111151 additions and 11 deletions

BIN
Assignments/Assignment1.zip Normal file

Binary file not shown.

View file

@ -0,0 +1,270 @@
#include "Application2.h"
#include <cmath>
void Application2::initScene() {
Data_Constructor(&data, 1, 8);
/* select scene here */
gnomeScene();
// horseScene();
// heterogenousScene();
}
void Application2::gnomeScene() {
FileName file = workingDir + FileName("Framework/scenes/gnome/garden_gnome.obj");
/* set default camera */
camera.from = Vec3fa(-0.07894, -0.414116, -1.40016);
camera.to = camera.from + Vec3fa(0.0, 0.0, 1.0);
speed = 0.005;
Ref<SceneGraph::GroupNode> sceneGraph = loadOBJ(file, false).cast<SceneGraph::GroupNode>();
auto light = new SceneGraph::LightNodeImpl<SceneGraph::PointLight>(
SceneGraph::PointLight(Vec3fa(-0.1, -0.065, 0.21), Vec3fa(10, 10, 10)));
sceneGraph->add(light);
Ref<SceneGraph::GroupNode> flattened_scene = SceneGraph::flatten(sceneGraph, SceneGraph::INSTANCING_NONE);
Scene* scene = new Scene;
scene->add(flattened_scene);
sceneGraph = nullptr;
flattened_scene = nullptr;
auto renderScene = new RenderScene(g_device, scene);
g_render_scene = renderScene;
data.scene = renderScene;
data.densityGrid = nullptr;
data.tempGrid = nullptr;
scene = nullptr;
}
void Application2::horseScene() {
FileName file = workingDir + FileName("Framework/scenes/horse/horse.obj");
/* set default camera */
camera.from = Vec3fa(0, 0.0, -0.5);
camera.to = Vec3fa(0.0, 0.0, 0.0);
// speed = 0.005;
Ref<SceneGraph::GroupNode> sceneGraph = loadOBJ(file, false).cast<SceneGraph::GroupNode>();
auto light = new SceneGraph::QuadLightMesh(Vec3fa(-0.25, 0.5, 0), Vec3fa(0.25, 0.5, 0.5),
Vec3fa(0.25, 0.5, 0),
Vec3fa(-0.25, 0.5, 0.5), Vec3fa(5, 5, 5));
sceneGraph->add(light);
Ref<SceneGraph::GroupNode> flattened_scene = SceneGraph::flatten(sceneGraph, SceneGraph::INSTANCING_NONE);
Scene* scene = new Scene;
scene->add(flattened_scene);
sceneGraph = nullptr;
flattened_scene = nullptr;
auto renderScene = new RenderScene(g_device, scene);
g_render_scene = renderScene;
data.scene = renderScene;
data.densityGrid = nullptr;
data.tempGrid = nullptr;
scene = nullptr;
}
void Application2::heterogenousScene() {
FileName file = workingDir + FileName("Framework/scenes/box.obj");
/* set default camera */
camera.from = Vec3fa(0, 0.0, -2);
camera.to = Vec3fa(0.0, 0.0, 0.0);
Ref<SceneGraph::GroupNode> sceneGraph = loadOBJ(file, false).cast<SceneGraph::GroupNode>();
auto light = new SceneGraph::QuadLightMesh(Vec3fa(-1, 2, -1), Vec3fa(1, 2, 1),
Vec3fa(1, 2, -1),
Vec3fa(-1, 2, 1), Vec3fa(1, 1, 1));
sceneGraph->add(light);
Ref<SceneGraph::GroupNode> flattened_scene = SceneGraph::flatten(sceneGraph, SceneGraph::INSTANCING_NONE);
Scene* scene = new Scene;
scene->add(flattened_scene);
sceneGraph = nullptr;
flattened_scene = nullptr;
auto renderScene = new RenderScene(g_device, scene);
Vec3fa worldPos(-0.5, -0.5, -0.5); // Corner of the Cornell Box
Vec3fa scale(1, 1, 1); // Calculated scale
FileName filegrid = workingDir + FileName("Framework/scenes/fire/density.vol");
data.densityGrid = new Grid(filegrid.c_str(), Vec3ia(76, 184, 80), worldPos, scale);
FileName filegrid2 = workingDir + FileName("Framework/scenes/fire/temperature.vol");
data.tempGrid = new Grid(filegrid2.c_str(), Vec3ia(76, 184, 80), worldPos, scale);
g_render_scene = renderScene;
data.scene = renderScene;
scene = nullptr;
}
Vec3fa ACESFilm(Vec3fa x, float exposure) {
const Vec3fa a = Vec3fa(2.51f);
const Vec3fa b = Vec3fa(0.03f);
const Vec3fa c = Vec3fa(2.43f);
const Vec3fa d = Vec3fa(0.59f);
const Vec3fa e = Vec3fa(0.14f);
x *= exposure;
return (x * (a * x + b)) / (x * (c * x + d) + e);
}
/* task that renders a single screen tile */
Vec3fa Application2::renderPixel(float x, float y, const ISPCCamera& camera, RayStats& stats, RandomSampler& sampler) {
/* radiance accumulator and weight */
Vec3fa L = Vec3fa(0.0f);
Vec3fa Lw = Vec3fa(1.0f);
float transmittance = 1.0f;
/* initialize ray */
Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x * camera.xfm.l.vx + y * camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f,
inf);
/* intersect ray with scene */
RTCIntersectArguments iargs;
rtcInitIntersectArguments(&iargs);
iargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
rtcIntersect1(data.g_scene, RTCRayHit_(ray), &iargs);
RayStats_addRay(stats);
const Vec3fa wo = neg(ray.dir);
/* shade pixels */
if (ray.geomID != RTC_INVALID_GEOMETRY_ID) {
Vec3fa Ns = normalize(ray.Ng);
Sample sample;
sample.P = ray.org + ray.tfar * ray.dir;
sample.Ng = ray.Ng;
sample.Ns = Ns;
unsigned matId = data.scene->geometries[ray.geomID]->materialID;
unsigned lightID = data.scene->geometries[ray.geomID]->lightID;
if (lightID != unsigned(-1)) {
const Light* l = data.scene->lights[lightID];
Light_EvalRes evalRes = Lights_eval(l, sample, -wo);
L += evalRes.value;
return L;
} else {
sample.Ng = face_forward(ray.dir, normalize(sample.Ng));
sample.Ns = face_forward(ray.dir, normalize(sample.Ns));
/* calculate BRDF */
BRDF brdf;
std::vector<Material *> material_array = data.scene->materials;
Material__preprocess(material_array, matId, brdf, wo, sample);
/* test if volume bounding box */
if (brdf.name == "default") {
if (boundingBox) {
return {1, 0, 0};
}
/* non scattering raymarch implementation */
Ray secondary(sample.P, ray.dir, 0.001f, inf, 0.0f);
/* trace secondary ray */
rtcInitIntersectArguments(&iargs);
iargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
rtcIntersect1(data.g_scene, RTCRayHit_(secondary), &iargs);
RayStats_addRay(stats);
if (secondary.geomID != RTC_INVALID_GEOMETRY_ID) {
int num_steps = 100;
Vec3fa p_c = secondary.org;
Vec3fa end = secondary.org + secondary.tfar * secondary.dir;
Vec3fa step = (end - p_c) / num_steps;
float step_length = embree::length(step);
for (int i = 0; i < num_steps; i++) {
float density = 0;
if (data.densityGrid) {
density = data.densityGrid->sampleW(p_c); // Sample density from the grid
}
float temp = 0;
if (data.tempGrid) {
temp = data.tempGrid->sampleW(p_c); // Sample density from the grid
}
float g = 0.8; // asymmetry factor of the phase function
float angle = 1.0;
// HG phase function
float p = phase(g, angle);
float pdf;
Vec3f dir = sample_phase_function(-ray.org, g, RandomSampler_get2D(sampler), pdf);
// if -1.0 it means that we're out of the bounding box of the grid
if (density != -1.0f) {
density *= 10;
float redWavelength = 700;
float greenWavelength = 530;
float blueWavelength = 470;
Vec3fa emissive = Vec3fa(0.0, 0.0, 0.0);
if (temp != -1.0f && temp > 0.001) {
temp *= 1000;
emissive = Vec3f(blackbody_radiance_normalized(redWavelength, temp),
blackbody_radiance_normalized(greenWavelength, temp),
blackbody_radiance_normalized(blueWavelength, temp));
}
transmittance *= std::exp(-density * step_length);
// Update transmittance using exponential decay
L += emissive * transmittance;
}
p_c += step; // Move to the next point along the ray
}
Ray light(secondary.org + secondary.tfar * secondary.dir, ray.dir, 0.001f, inf, 0.0f);
/* trace light ray after medium escaped */
rtcInitIntersectArguments(&iargs);
iargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
rtcIntersect1(data.g_scene, RTCRayHit_(light), &iargs);
RayStats_addRay(stats);
if (light.geomID != RTC_INVALID_GEOMETRY_ID) {
unsigned lightID2 = data.scene->geometries[light.geomID]->lightID;
if (lightID2 != unsigned(-1)) {
const Light* l = data.scene->lights[lightID2];
Light_EvalRes evalRes = Lights_eval(l, sample, -wo);
L += evalRes.value * transmittance;
return L;
}
}
}
} else {
/* sample BRDF at hit point */
Sample3f wi1;
Material__sample(material_array, matId, brdf, Lw, wo, sample, wi1, RandomSampler_get2D(sampler));
int id = (int) (RandomSampler_get1D(sampler) * data.scene->lights.size());
if (id == data.scene->lights.size())
id = data.scene->lights.size() - 1;
const Light* l = data.scene->lights[id];
Light_SampleRes ls = Lights_sample(l, sample, RandomSampler_get2D(sampler));
Vec3fa diffuse = Material__eval(material_array, matId, brdf, wo, sample, ls.dir);
/* initialize shadow ray */
Ray shadow(sample.P, ls.dir, 0.001f, ls.dist - 0.001f, 0.0f);
/* trace shadow ray */
RTCOccludedArguments sargs;
rtcInitOccludedArguments(&sargs);
sargs.feature_mask = RTC_FEATURE_FLAG_TRIANGLE;
rtcOccluded1(data.g_scene, RTCRay_(shadow), &sargs);
RayStats_addShadowRay(stats);
if (shadow.tfar >= 0.0f) {
L += diffuse * ls.weight;
}
}
}
}
return ACESFilm(L, 1);
}

View file

@ -0,0 +1,29 @@
#pragma once
#include "helper.hpp"
class Application2 : public Application {
public:
Application2(int argc, char** argv) : Application(argc, argv, "Assignment 1") {
}
private:
Vec3fa renderPixel(float x, float y, const ISPCCamera& camera, RayStats& stats, RandomSampler& sampler) override;
void drawGUI() override {
ImGui::Checkbox("Bounding Box", &boundingBox);
}
void initScene() override;
void emptyScene();
void gnomeScene();
void horseScene();
void heterogenousScene();
float colorLight[3] = {1.0f, 1.0f, 1.0f};
bool boundingBox = true;
};

View file

@ -1,5 +1,8 @@
cmake_minimum_required(VERSION 3.16.0 FATAL_ERROR)
project(Assignment2)
add_executable(${PROJECT_NAME} "assignment2.cpp")
add_executable(${PROJECT_NAME} "assignment2.cpp"
Application2.cpp
Application2.h
helper.hpp)
target_link_libraries(${PROJECT_NAME} PUBLIC CGI-framework)

View file

@ -1,4 +1,9 @@
#include "Application2.h"
int main(int argc, char** argv) {
auto app = new Application2(argc, argv);
app->run();
return 0;
}

View file

@ -0,0 +1,358 @@
#pragma once
#include <application.h>
#include <sampling.hpp>
#include <scenegraph/obj_loader.h>
#include <scenegraph/grid.h>
#include <lights/ambient_light.h>
#include <lights/directional_light.h>
#include <lights/point_light.h>
#include <lights/quad_light.h>
#include <lights/spot_light.h>
using namespace embree;
inline Vec3fa reflect(const Vec3fa& V, const Vec3fa& N) { return 2.0f * dot(V, N) * N - V; }
inline Vec3fa face_forward(const Vec3fa& dir, const Vec3fa& _Ng) {
const Vec3fa Ng = _Ng;
return dot(dir, Ng) < 0.0f ? Ng : neg(Ng);
}
// Henyey-Greenstein phase function
inline float phase(float g, float cos_theta) {
float denom = 1 + g * g - 2 * g * cos_theta;
return 1 / (4 * M_PI) * (1 - g * g) / (denom * sqrtf(denom));
}
inline void build_basis(Vec3fa normal, Vec3fa& tangent, Vec3fa& binormal) {
float sign_value = normal.z >= 0.0 ? 1.0 : -1.0;
float a = -1.0 / (sign_value + normal.z);
float b = normal.x * normal.y * a;
tangent = Vec3fa(1.0 + sign_value * normal.x * normal.x * a, sign_value * b, -sign_value * normal.x);
binormal = Vec3fa(b, sign_value + normal.y * normal.y * a, -normal.y);
}
// wo = outgoing direction, g = HG scattering parameter, u = random vector. it outputs the sampled direction + fill pdf in
inline Vec3fa sample_phase_function(Vec3fa wo, float g, Vec2fa u, float& pdf) {
float cos_theta;
if (std::abs(g) < 1e-3)
cos_theta = 1.0 - 2.0 * u[0];
else {
float sqr = (1.0 - g * g) / (1.0 - g + 2.0 * g * u[0]);
cos_theta = (1.0 + g * g - sqr * sqr) / (2.0 * g);
}
float sin_theta = std::sqrt(max(0.0, 1.0 - cos_theta * cos_theta));
float phi = 2.0 * M_PI * u[1];
Vec3fa tvec, bvec;
build_basis(wo, tvec, bvec);
float sin_phi = std::sqrt(phi);
float cos_phi = std::sqrt(phi);
Vec3fa inc_light = sin_theta * cos_phi * tvec +
sin_theta * sin_phi * bvec +
-cos_theta * wo;
pdf = phase(g, cos_theta);
return inc_light;
}
// blackbody radiance calculation for a given tempretature
inline float blackbody_radiance(float lambda, float temp) {
const float c = 299792458; // Speed of light in vacuum (m/s)
const float h = 6.62606957e-34; // Planck's constant (J*s)
const float kb = 1.3806488e-23; // Boltzmann constant (J/K)
// Convert lambda from nanometers to meters
float l = lambda * 1e-9;
// Calculate lambda to the fifth power
float lambda5 = l * l * l * l * l;
// Calculate emitted radiance using Planck's Law
float Le = (2 * h * c * c) / (lambda5 * (std::exp((h * c) / (l * kb * temp)) - 1));
return Le;
}
inline float blackbody_radiance_normalized(float lambda, float tmp) {
float radiance = blackbody_radiance(lambda, tmp);
float lambdaMax = 2.8977721e-3 / tmp * 1e9;
float maxL = blackbody_radiance(lambdaMax, tmp);
return radiance / maxL;
}
inline Light_SampleRes Lights_sample(const Light* self,
const Sample& sp, /*! point to generate the sample for >*/
const Vec2f s) /*! random numbers to generate the sample >*/
{
LightType ty = self->type;
switch (ty) {
case LIGHT_AMBIENT: return AmbientLight_sample(self, sp, s);
case LIGHT_POINT: return PointLight_sample(self, sp, s);
case LIGHT_DIRECTIONAL: return DirectionalLight_sample(self, sp, s);
case LIGHT_SPOT: return SpotLight_sample(self, sp, s);
case LIGHT_QUAD: return QuadLight_sample(self, sp, s);
default: {
Light_SampleRes res;
res.weight = Vec3fa(0, 0, 0);
res.dir = Vec3fa(0, 0, 0);
res.dist = 0;
res.pdf = inf;
return res;
}
}
}
inline Light_EvalRes Lights_eval(const Light* self,
const Sample& sp,
const Vec3fa& dir) {
LightType ty = self->type;
switch (ty) {
case LIGHT_AMBIENT: return AmbientLight_eval(self, sp, dir);
case LIGHT_POINT: return PointLight_eval(self, sp, dir);
case LIGHT_DIRECTIONAL: return DirectionalLight_eval(self, sp, dir);
case LIGHT_SPOT: return SpotLight_eval(self, sp, dir);
case LIGHT_QUAD: return QuadLight_eval(self, sp, dir);
default: {
Light_EvalRes res;
res.value = Vec3fa(0, 0, 0);
res.dist = inf;
res.pdf = 0.f;
return res;
}
}
}
struct BRDF {
float Ns; /*< specular exponent */
float Ni; /*< optical density for the surface (index of refraction) */
Vec3fa Ka; /*< ambient reflectivity */
Vec3fa Kd; /*< diffuse reflectivity */
Vec3fa Ks; /*< specular reflectivity */
Vec3fa Kt; /*< transmission filter */
// float dummy[30];
std::string name;
};
////////////////////////////////////////////////////////////////////////////////
// Lambertian BRDF //
////////////////////////////////////////////////////////////////////////////////
struct Lambertian {
Vec3fa R;
};
inline Vec3fa Lambertian__eval(const Lambertian* This,
const Vec3fa& wo, const Sample& dg, const Vec3fa& wi) {
return This->R * (1.0f / (float) (float(M_PI))) * clamp(dot(wi, dg.Ns));
}
inline Vec3fa Lambertian__sample(const Lambertian* This,
const Vec3fa& wo,
const Sample& dg,
Sample3f& wi,
const Vec2f& s) {
wi = cosineSampleHemisphere(s.x, s.y, dg.Ns);
return Lambertian__eval(This, wo, dg, wi.v);
}
inline void Lambertian__Constructor(Lambertian* This, const Vec3fa& R) {
This->R = R;
}
inline Lambertian make_Lambertian(const Vec3fa& R) {
Lambertian v;
Lambertian__Constructor(&v, R);
return v;
}
////////////////////////////////////////////////////////////////////////////////
// Matte Material //
////////////////////////////////////////////////////////////////////////////////
inline void MatteMaterial__preprocess(MatteMaterial* material, BRDF& brdf, const Vec3fa& wo, const Sample& sp) {
}
inline Vec3fa MatteMaterial__eval(MatteMaterial* This, const BRDF& brdf, const Vec3fa& wo, const Sample& sp,
const Vec3fa& wi) {
Lambertian lambertian = make_Lambertian(Vec3fa((Vec3fa) This->reflectance));
return Lambertian__eval(&lambertian, wo, sp, wi);
}
inline Vec3fa MatteMaterial__sample(MatteMaterial* This, const BRDF& brdf, const Vec3fa& Lw, const Vec3fa& wo,
const Sample& sp, Sample3f& wi_o, const Vec2f& s) {
Lambertian lambertian = make_Lambertian(Vec3fa((Vec3fa) This->reflectance));
return Lambertian__sample(&lambertian, wo, sp, wi_o, s);
}
////////////////////////////////////////////////////////////////////////////////
// OBJ Material //
////////////////////////////////////////////////////////////////////////////////
inline void OBJMaterial__preprocess(OBJMaterial* material, BRDF& brdf, const Vec3fa& wo, const Sample& sp) {
float d = material->d;
// if (material->map_d) d *= getTextureTexel1f(material->map_d, dg.u, dg.v);
brdf.Ka = Vec3fa(material->Ka);
//if (material->map_Ka) { brdf.Ka *= material->map_Ka->get(dg.st); }
brdf.Kd = d * Vec3fa(material->Kd);
// if (material->map_Kd) brdf.Kd = brdf.Kd * getTextureTexel3f(material->map_Kd, dg.u, dg.v);
brdf.Ks = d * Vec3fa(material->Ks);
//if (material->map_Ks) brdf.Ks *= material->map_Ks->get(dg.st);
brdf.Ns = material->Ns;
//if (material->map_Ns) { brdf.Ns *= material->map_Ns.get(dg.st); }
brdf.Kt = (1.0f - d) * Vec3fa(material->Kt);
brdf.Ni = material->Ni;
brdf.name = material->name;
}
inline Vec3fa OBJMaterial__eval(OBJMaterial* material, const BRDF& brdf, const Vec3fa& wo, const Sample& sp,
const Vec3fa& wi) {
Vec3fa R = Vec3fa(0.0f);
const float Md = max(max(brdf.Kd.x, brdf.Kd.y), brdf.Kd.z);
const float Ms = max(max(brdf.Ks.x, brdf.Ks.y), brdf.Ks.z);
const float Mt = max(max(brdf.Kt.x, brdf.Kt.y), brdf.Kt.z);
if (Md > 0.0f) {
R = R + (1.0f / float(M_PI)) * clamp(dot(wi, sp.Ns)) * brdf.Kd;
}
if (Ms > 0.0f) {
const Sample3f refl = make_Sample3f(reflect(wo, sp.Ns), 1.0f);
if (dot(refl.v, wi) > 0.0f) {
R = R + (brdf.Ns + 2) * float(one_over_two_pi) * powf(max(1e-10f, dot(refl.v, wi)), brdf.Ns) *
clamp(dot(wi, sp.Ns)) * brdf.Ks;
}
}
if (Mt > 0.0f) {
}
return R;
}
inline Vec3fa OBJMaterial__sample(OBJMaterial* material, const BRDF& brdf, const Vec3fa& Lw, const Vec3fa& wo,
const Sample& sp, Sample3f& wi_o, const Vec2f& s) {
Vec3fa cd = Vec3fa(0.0f);
Sample3f wid = make_Sample3f(Vec3fa(0.0f), 0.0f);
if (max(max(brdf.Kd.x, brdf.Kd.y), brdf.Kd.z) > 0.0f) {
wid = cosineSampleHemisphere(s.x, s.y, sp.Ns);
cd = float(one_over_pi) * clamp(dot(wid.v, sp.Ns)) * brdf.Kd;
}
Vec3fa cs = Vec3fa(0.0f);
Sample3f wis = make_Sample3f(Vec3fa(0.0f), 0.0f);
if (max(max(brdf.Ks.x, brdf.Ks.y), brdf.Ks.z) > 0.0f) {
const Sample3f refl = make_Sample3f(reflect(wo, sp.Ns), 1.0f);
wis.v = powerCosineSampleHemisphere(brdf.Ns, s);
wis.pdf = powerCosineSampleHemispherePDF(wis.v, brdf.Ns);
wis.v = frame(refl.v) * wis.v;
cs = (brdf.Ns + 2) * float(one_over_two_pi) * powf(max(dot(refl.v, wis.v), 1e-10f), brdf.Ns) *
clamp(dot(wis.v, sp.Ns)) * brdf.Ks;
}
Vec3fa ct = Vec3fa(0.0f);
Sample3f wit = make_Sample3f(Vec3fa(0.0f), 0.0f);
if (max(max(brdf.Kt.x, brdf.Kt.y), brdf.Kt.z) > 0.0f) {
wit = make_Sample3f(neg(wo), 1.0f);
ct = brdf.Kt;
}
const Vec3fa md = Lw * cd / wid.pdf;
const Vec3fa ms = Lw * cs / wis.pdf;
const Vec3fa mt = Lw * ct / wit.pdf;
const float Cd = wid.pdf == 0.0f ? 0.0f : max(max(md.x, md.y), md.z);
const float Cs = wis.pdf == 0.0f ? 0.0f : max(max(ms.x, ms.y), ms.z);
const float Ct = wit.pdf == 0.0f ? 0.0f : max(max(mt.x, mt.y), mt.z);
const float C = Cd + Cs + Ct;
if (C == 0.0f) {
wi_o = make_Sample3f(Vec3fa(0, 0, 0), 0);
return Vec3fa(0, 0, 0);
}
const float CPd = Cd / C;
const float CPs = Cs / C;
const float CPt = Ct / C;
if (s.x < CPd) {
wi_o = make_Sample3f(wid.v, wid.pdf * CPd);
return cd;
} else if (s.x < CPd + CPs) {
wi_o = make_Sample3f(wis.v, wis.pdf * CPs);
return cs;
} else {
wi_o = make_Sample3f(wit.v, wit.pdf * CPt);
return ct;
}
}
////////////////////////////////////////////////////////////////////////////////
// Material //
////////////////////////////////////////////////////////////////////////////////
inline void Material__preprocess(std::vector<Material *> materials, unsigned int materialID,
BRDF& brdf, const Vec3fa& wo, const Sample& sp) {
auto id = materialID; {
if (id < materials.size()) // FIXME: workaround for ISPC bug, location reached with empty execution mask
{
Material* material = materials[id];
switch (material->type) {
case MATERIAL_OBJ: OBJMaterial__preprocess((OBJMaterial *) material, brdf, wo, sp);
break;
case MATERIAL_MATTE: MatteMaterial__preprocess((MatteMaterial *) material, brdf, wo, sp);
break;
default: break;
}
}
}
}
inline Vec3fa Material__eval(std::vector<Material *> materials, unsigned int materialID,
const BRDF& brdf, const Vec3fa& wo, const Sample& sp, const Vec3fa& wi) {
Vec3fa c = Vec3fa(0.0f);
auto id = materialID; {
if (id < materials.size()) // FIXME: workaround for ISPC bug, location reached with empty execution mask
{
Material* material = materials[id];
switch (material->type) {
case MATERIAL_OBJ: c = OBJMaterial__eval((OBJMaterial *) material, brdf, wo, sp, wi);
break;
case MATERIAL_MATTE: c = MatteMaterial__eval((MatteMaterial *) material, brdf, wo, sp, wi);
break;
default:
std::cout << "No Material found" << std::endl;
c = Vec3fa(0.0f);
}
}
}
return c;
}
inline Vec3fa Material__sample(std::vector<Material *> materials, unsigned int materialID,
const BRDF& brdf, const Vec3fa& Lw, const Vec3fa& wo, const Sample& sp, Sample3f& wi_o,
const Vec2f& s) {
Vec3fa c = Vec3fa(0.0f);
auto id = materialID; {
if (id < materials.size()) // FIXME: workaround for ISPC bug, location reached with empty execution mask
{
Material* material = materials[id];
switch (material->type) {
case MATERIAL_OBJ: c = OBJMaterial__sample((OBJMaterial *) material, brdf, Lw, wo, sp, wi_o, s);
break;
case MATERIAL_MATTE: c = MatteMaterial__sample((MatteMaterial *) material, brdf, Lw, wo, sp, wi_o,
s);
break;
default: wi_o = make_Sample3f(Vec3fa(0.0f), 0.0f);
c = Vec3fa(0.0f);
break;
}
}
}
return c;
}