Add interactive viewer

This commit is contained in:
hal8174 2024-11-26 20:37:55 +01:00
parent 7d69122e8c
commit b5eb6fbbd0
7 changed files with 2521 additions and 158 deletions

View file

@ -0,0 +1,17 @@
[package]
name = "ray-tracing-egui"
version = "0.1.0"
edition = "2021"
[dependencies]
vulkano = "0.34.1"
vulkano-shaders = "0.34.0"
winit = "0.28"
egui = "0.24"
egui_winit_vulkano = "0.27.0"
ray-tracing-core = { path = "../ray-tracing-core" }
ray-tracing-scene = { path = "../ray-tracing-scene" }
ray-tracing-renderer = { path = "../ray-tracing-renderer" }
rayon = "1.10.0"
rand = { version = "0.8.5", features = ["small_rng"] }
clap = { version = "4.5.19", features = ["derive"] }

View file

@ -0,0 +1,306 @@
use egui_winit_vulkano::{Gui, GuiConfig};
use render::render_thread;
use setup::{get_compute_pipeline, get_framebuffers};
use std::sync::Arc;
use vulkano::{
buffer::{Buffer, BufferCreateInfo, BufferUsage},
command_buffer::{allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder},
descriptor_set::{
allocator::StandardDescriptorSetAllocator, PersistentDescriptorSet, WriteDescriptorSet,
},
memory::allocator::{
AllocationCreateInfo, MemoryAllocator, MemoryTypeFilter, StandardMemoryAllocator,
},
pipeline::Pipeline,
swapchain::{self, SwapchainCreateInfo, SwapchainPresentInfo},
sync::{self, future::FenceSignalFuture, GpuFuture},
Validated, VulkanError,
};
use winit::{
event::{Event, WindowEvent},
event_loop::ControlFlow,
};
mod render;
mod setup;
mod cs {
vulkano_shaders::shader! {
ty: "compute",
src: "
#version 460
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
layout(set = 0, binding = 0) uniform writeonly image2D outputImage;
layout(set = 0, binding = 1) uniform GPUSettings {
uint samples;
} settings;
layout(set = 0, binding = 2) buffer Data {
float data[];
} buf;
void main() {
uvec2 size = imageSize(outputImage);
uvec2 pos = gl_GlobalInvocationID.xy;
if (pos.x < size.x && pos.y < size.y) {
uint index = (pos.y * size.x + pos.x) * 3;
vec3 color = vec3(buf.data[index], buf.data[index + 1], buf.data[index + 2]);
vec4 to_write = vec4(color / settings.samples, 1.0);
imageStore(outputImage, ivec2(pos), to_write);
}
}
"
}
}
fn main() {
let (event_loop, physical_device, device, queue, window, surface) = setup::setup();
let (mut swapchain, mut images) = setup::create_swapchain(
physical_device.clone(),
device.clone(),
surface.clone(),
window.inner_size(),
);
let mut gui = Gui::new(
&event_loop,
surface.clone(),
queue.clone(),
swapchain.image_format(),
GuiConfig {
is_overlay: true,
..Default::default()
},
);
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
let command_buffer_allocator =
StandardCommandBufferAllocator::new(device.clone(), Default::default());
let descriptor_set_allocator =
StandardDescriptorSetAllocator::new(device.clone(), Default::default());
let (control_tx, control_rx) = std::sync::mpsc::channel();
let (data_tx, data_rx) = std::sync::mpsc::channel();
let mut settings = render::RenderSettings {
width: window.inner_size().width,
height: window.inner_size().height,
};
let send_settings = settings.clone();
let send_memory_allocator = memory_allocator.clone();
std::thread::spawn(move || {
render_thread(send_settings, control_rx, data_tx, send_memory_allocator)
});
let render_pass = setup::get_render_pass(device.clone(), &swapchain);
let mut framebuffers = setup::get_framebuffers(&images, &render_pass);
let mut recreate_swapchain = false;
let mut fences: Vec<Option<Arc<FenceSignalFuture<_>>>> = vec![None; images.len()];
let mut previous_fence_i = 0;
let mut buffer = None;
let cs = cs::load(device.clone()).unwrap();
let cpu_buffers: Vec<_> = framebuffers
.iter()
.map(|_| {
Buffer::from_data(
memory_allocator.clone(),
BufferCreateInfo {
usage: BufferUsage::UNIFORM_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
cs::GPUSettings { samples: 1 },
)
.unwrap()
})
.collect();
let mut pipeline = get_compute_pipeline(device.clone(), cs.clone());
event_loop.run(move |event, _, control_flow| match event {
Event::WindowEvent { window_id, event } => {
gui.update(&event);
match event {
WindowEvent::Resized(_) => {
recreate_swapchain = true;
window.request_redraw();
settings.width = window.inner_size().width;
settings.height = window.inner_size().height;
let _ = control_tx.send(settings.clone());
}
WindowEvent::CloseRequested => {
*control_flow = ControlFlow::Exit;
}
_ => (),
}
}
Event::MainEventsCleared => {
if recreate_swapchain {
let (new_swapchain, new_images) = swapchain
.recreate(SwapchainCreateInfo {
image_extent: window.inner_size().into(),
..swapchain.create_info()
})
.expect("failed to recreate swapchain: {e}");
swapchain = new_swapchain;
framebuffers = get_framebuffers(&new_images, &render_pass);
pipeline = get_compute_pipeline(device.clone(), cs.clone());
}
gui.immediate_ui(|gui| {
let ctx = gui.context();
egui::Window::new("panel").show(&ctx, |ui| {
ui.heading("fdjkslf");
ui.collapsing("Render Settings:", |ui| {
ui.label(format!("{:#?}", &settings));
});
});
});
let (image_i, suboptimal, acquire_future) =
match swapchain::acquire_next_image(swapchain.clone(), None)
.map_err(Validated::unwrap)
{
Ok(r) => r,
Err(e) => panic!("failed to acquire next image: {e}"),
};
let previous_future = match fences[previous_fence_i as usize].clone() {
// Create a NowFuture
None => {
let mut now = sync::now(device.clone());
now.cleanup_finished();
now.boxed()
}
// Use the existing FenceSignalFuture
Some(fence) => fence.boxed(),
};
if suboptimal {
recreate_swapchain = true;
}
if let Some(image_fence) = &fences[image_i as usize] {
image_fence.wait(None).unwrap();
}
while let Ok(b) = data_rx.try_recv() {
buffer = Some(b);
}
if buffer.as_ref().is_some_and(|b| {
b.width != window.inner_size().width || b.height != window.inner_size().height
}) {
buffer = None;
}
let compute_future = match &buffer {
Some(b) => {
match cpu_buffers[image_i as usize].write() {
Ok(mut local) => {
local.samples = b.samples;
}
Err(e) => {
println!("{}", e);
}
}
let mut builder = AutoCommandBufferBuilder::primary(
&command_buffer_allocator,
queue.queue_family_index(),
vulkano::command_buffer::CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
let pipeline_layout = pipeline.layout();
let descriptor_set_layouts = pipeline_layout.set_layouts();
let descriptor_set_layout = descriptor_set_layouts.first().unwrap();
let descriptor_set = PersistentDescriptorSet::new(
&descriptor_set_allocator,
descriptor_set_layout.clone(),
[
WriteDescriptorSet::image_view(
0,
framebuffers[image_i as usize].attachments()[0].clone(),
),
WriteDescriptorSet::buffer(1, cpu_buffers[image_i as usize].clone()),
WriteDescriptorSet::buffer(2, b.buffer.clone()),
],
[],
)
.unwrap();
builder
.bind_pipeline_compute(pipeline.clone())
.unwrap()
.bind_descriptor_sets(
vulkano::pipeline::PipelineBindPoint::Compute,
pipeline_layout.clone(),
0,
descriptor_set,
)
.unwrap()
.dispatch([b.width.div_ceil(8), b.height.div_ceil(8), 1])
.unwrap();
let command = builder.build().unwrap();
acquire_future
.join(previous_future)
.then_execute(queue.clone(), command)
.unwrap()
.then_signal_fence()
.boxed()
}
None => acquire_future.join(previous_future).boxed(),
};
let gui_future = gui.draw_on_image(
compute_future,
framebuffers[image_i as usize].attachments()[0].clone(),
);
let future = gui_future
.then_swapchain_present(
queue.clone(),
SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_i),
)
.then_signal_fence_and_flush();
fences[image_i as usize] = match future.map_err(Validated::unwrap) {
Ok(value) => Some(Arc::new(value)),
Err(VulkanError::OutOfDate) => {
recreate_swapchain = true;
None
}
Err(e) => {
println!("failed to flush future: {e}");
None
}
};
previous_fence_i = image_i;
}
_ => (),
})
}

View file

@ -0,0 +1,111 @@
use std::sync::{
mpsc::{Receiver, Sender},
Arc,
};
use rand::{rngs::SmallRng, SeedableRng};
use ray_tracing_core::{camera::BasicCamera, renderer::ClassicalRenderer};
use ray_tracing_renderer::path_tracer_importance::PathTracerImportance;
use ray_tracing_scene::examples::{self, example_scenes, ExampleScene};
use rayon::{
iter::{IndexedParallelIterator, ParallelIterator},
slice::ParallelSliceMut,
};
use vulkano::{
buffer::{Buffer, BufferCreateInfo, BufferUsage, Subbuffer},
memory::allocator::{
AllocationCreateInfo, FreeListAllocator, GenericMemoryAllocator, MemoryAllocator,
MemoryTypeFilter,
},
};
#[derive(Debug, Clone)]
pub struct RenderSettings {
pub width: u32,
pub height: u32,
}
pub enum ControlMessages {
SetSettings(RenderSettings),
}
pub struct Data {
pub width: u32,
pub height: u32,
pub samples: u32,
pub buffer: Subbuffer<[f32]>,
}
pub fn render_thread(
s: RenderSettings,
rx: Receiver<RenderSettings>,
tx: Sender<Data>,
allocator: Arc<impl MemoryAllocator>,
) {
let mut settings = s;
let mut buffer = vec![0.0; settings.width as usize * settings.height as usize * 3];
let e = examples::basic_cornell();
let scene = e.scene;
let camera = BasicCamera::new(
settings.width,
settings.height,
e.camera_pos,
e.camera_dir,
e.camera_up,
e.horizontal_fov,
);
let mut renderer = PathTracerImportance::new(settings.width, settings.height);
let mut samples = 0;
loop {
while let Ok(s) = rx.try_recv() {
settings = s;
buffer = vec![0.0; settings.width as usize * settings.height as usize * 3];
renderer = PathTracerImportance::new(settings.width, settings.height);
samples = 0;
}
buffer.par_chunks_mut(3).enumerate().for_each(|(i, c)| {
let x = (i % settings.width as usize) as u32;
let y = (i / settings.height as usize) as u32;
let mut rng = SmallRng::seed_from_u64(
(x + y * settings.width) as u64
+ (settings.width as u64 * settings.height as u64 * samples as u64),
);
let r = renderer.render_pixel(&scene, &camera, x, y, &mut rng);
c[0] += r.r();
c[1] += r.g();
c[2] += r.b();
});
samples += 1;
let data = Data {
width: settings.width,
height: settings.height,
samples,
buffer: Buffer::from_iter(
allocator.clone(),
BufferCreateInfo {
usage: BufferUsage::STORAGE_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
buffer.iter().copied(),
)
.unwrap(),
};
let _ = tx.send(data);
}
}

View file

@ -0,0 +1,206 @@
use std::sync::Arc;
use vulkano::{
device::{
physical::{PhysicalDevice, PhysicalDeviceType},
Device, DeviceCreateInfo, DeviceExtensions, Features, Queue, QueueCreateInfo, QueueFlags,
},
format::Format,
image::{view::ImageView, Image, ImageUsage},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
pipeline::{
compute::ComputePipelineCreateInfo, layout::PipelineDescriptorSetLayoutCreateInfo,
ComputePipeline, PipelineLayout, PipelineShaderStageCreateInfo,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass},
shader::ShaderModule,
swapchain::{Surface, Swapchain, SwapchainCreateInfo},
VulkanLibrary,
};
use winit::{
dpi::PhysicalSize,
event_loop::{EventLoop, EventLoopBuilder},
window::{Window, WindowBuilder},
};
fn select_physical_device(
instance: &Arc<Instance>,
surface: &Arc<Surface>,
device_extensions: &DeviceExtensions,
device_features: &Features,
) -> (Arc<PhysicalDevice>, u32) {
instance
.enumerate_physical_devices()
.expect("could not enumerate device")
.filter(|p| p.supported_extensions().contains(device_extensions))
.filter(|p| p.supported_features().contains(device_features))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
q.queue_flags.contains(QueueFlags::GRAPHICS)
&& p.surface_support(i as u32, surface).unwrap_or(false)
})
.map(|q| (p, q as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
_ => 4,
})
.expect("no device available")
}
pub fn setup() -> (
EventLoop<()>,
Arc<PhysicalDevice>,
Arc<Device>,
Arc<Queue>,
Arc<Window>,
Arc<Surface>,
) {
let event_loop: EventLoop<()> = EventLoopBuilder::default().build();
let library = VulkanLibrary::new().unwrap();
let required_extensions = Surface::required_extensions(&event_loop);
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
enabled_extensions: required_extensions,
..Default::default()
},
)
.unwrap();
let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap());
let surface = Surface::from_window(instance.clone(), window.clone()).unwrap();
let device_extensions = DeviceExtensions {
khr_swapchain: true,
..Default::default()
};
let device_features = Features {
shader_float64: true,
..Features::empty()
};
let (physical_device, queue_family_index) =
select_physical_device(&instance, &surface, &device_extensions, &device_features);
let (device, mut queues) = Device::new(
physical_device.clone(),
DeviceCreateInfo {
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
enabled_extensions: device_extensions,
enabled_features: device_features,
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
(event_loop, physical_device, device, queue, window, surface)
}
pub fn create_swapchain(
physical_device: Arc<PhysicalDevice>,
device: Arc<Device>,
surface: Arc<Surface>,
dimensions: PhysicalSize<u32>,
) -> (Arc<Swapchain>, Vec<Arc<Image>>) {
let caps = physical_device
.surface_capabilities(&surface, Default::default())
.unwrap();
let image_format = physical_device
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0;
let composite_alpha = caps.supported_composite_alpha.into_iter().next().unwrap();
Swapchain::new(
device.clone(),
surface.clone(),
SwapchainCreateInfo {
min_image_count: caps.min_image_count + 1,
image_format,
image_extent: dimensions.into(),
image_usage: ImageUsage::COLOR_ATTACHMENT.union(ImageUsage::STORAGE),
composite_alpha,
..Default::default()
},
)
.unwrap()
}
pub fn get_render_pass(device: Arc<Device>, swapchain: &Arc<Swapchain>) -> Arc<RenderPass> {
vulkano::single_pass_renderpass!(
device,
attachments: {
color: {
format: swapchain.image_format(),
samples: 1,
load_op: Clear,
store_op: Store,
},
},
pass: {
color: [color],
depth_stencil: {},
},
)
.unwrap()
}
pub fn get_framebuffers(
images: &[Arc<Image>],
render_pass: &Arc<RenderPass>,
) -> Vec<Arc<Framebuffer>> {
images
.iter()
.map(|image| {
let view = ImageView::new_default(image.clone()).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view],
..Default::default()
},
)
.unwrap()
})
.collect()
}
pub fn get_compute_pipeline(device: Arc<Device>, cs: Arc<ShaderModule>) -> Arc<ComputePipeline> {
let cs = cs.entry_point("main").unwrap();
let stage = PipelineShaderStageCreateInfo::new(cs);
let layout = PipelineLayout::new(
device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages([&stage])
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
ComputePipeline::new(
device,
None,
ComputePipelineCreateInfo {
..ComputePipelineCreateInfo::stage_layout(stage, layout)
},
)
.unwrap()
}